import cv2 import numpy as np import shutil import os from os.path import join as pjoin def segment_img(org, segment_size, output_path, overlap=100): if not os.path.exists(output_path): os.mkdir(output_path) height, width = np.shape(org)[0], np.shape(org)[1] top = 0 bottom = segment_size segment_no = 0 while top < height and bottom < height: segment = org[top:bottom] cv2.imwrite(os.path.join(output_path, str(segment_no) + '.png'), segment) segment_no += 1 top += segment_size - overlap bottom = bottom + segment_size - overlap if bottom + segment_size - overlap <= height else height def clipping(img, components, pad=0, show=False): """ :param adjust: shrink(negative) or expand(positive) the bounding box :param img: original image :param corners: ((column_min, row_min),(column_max, row_max)) :return: list of clipping images """ clips = [] for component in components: clip = component.compo_clipping(img, pad=pad) clips.append(clip) if show: cv2.imshow('clipping', clip) cv2.waitKey() return clips def dissemble_clip_img_hollow(clip_root, org, compos): if os.path.exists(clip_root): shutil.rmtree(clip_root) os.mkdir(clip_root) cls_dirs = [] bkg = org.copy() hollow_out = np.ones(bkg.shape[:2], dtype=np.uint8) * 255 for compo in compos: cls = compo.category c_root = pjoin(clip_root, cls) c_path = pjoin(c_root, str(compo.id) + '.jpg') if cls not in cls_dirs: os.mkdir(c_root) cls_dirs.append(cls) clip = compo.compo_clipping(org) cv2.imwrite(c_path, clip) col_min, row_min, col_max, row_max = compo.put_bbox() hollow_out[row_min: row_max, col_min: col_max] = 0 bkg = cv2.merge((bkg, hollow_out)) cv2.imwrite(os.path.join(clip_root, 'bkg.png'), bkg) def dissemble_clip_img_fill(clip_root, org, compos, flag='most'): def average_pix_around(pad=6, offset=3): up = row_min - pad if row_min - pad >= 0 else 0 left = col_min - pad if col_min - pad >= 0 else 0 bottom = row_max + pad if row_max + pad < org.shape[0] - 1 else org.shape[0] - 1 right = col_max + pad if col_max + pad < org.shape[1] - 1 else org.shape[1] - 1 average = [] for i in range(3): avg_up = np.average(org[up:row_min - offset, left:right, i]) avg_bot = np.average(org[row_max + offset:bottom, left:right, i]) avg_left = np.average(org[up:bottom, left:col_min - offset, i]) avg_right = np.average(org[up:bottom, col_max + offset:right, i]) average.append(int((avg_up + avg_bot + avg_left + avg_right)/4)) return average def most_pix_around(pad=6, offset=2): up = row_min - pad if row_min - pad >= 0 else 0 left = col_min - pad if col_min - pad >= 0 else 0 bottom = row_max + pad if row_max + pad < org.shape[0] - 1 else org.shape[0] - 1 right = col_max + pad if col_max + pad < org.shape[1] - 1 else org.shape[1] - 1 most = [] for i in range(3): val = np.concatenate((org[up:row_min - offset, left:right, i].flatten(), org[row_max + offset:bottom, left:right, i].flatten(), org[up:bottom, left:col_min - offset, i].flatten(), org[up:bottom, col_max + offset:right, i].flatten())) # print(val) # print(np.argmax(np.bincount(val))) most.append(int(np.argmax(np.bincount(val)))) return most if os.path.exists(clip_root): shutil.rmtree(clip_root) os.mkdir(clip_root) cls_dirs = [] bkg = org.copy() for compo in compos: cls = compo.category c_root = pjoin(clip_root, cls) c_path = pjoin(c_root, str(compo.id) + '.jpg') if cls not in cls_dirs: os.mkdir(c_root) cls_dirs.append(cls) clip = compo.compo_clipping(org) cv2.imwrite(c_path, clip) col_min, row_min, col_max, row_max = compo.put_bbox() if flag == 'average': color = average_pix_around() elif flag == 'most': color = most_pix_around() cv2.rectangle(bkg, (col_min, row_min), (col_max, row_max), color, -1) cv2.imwrite(os.path.join(clip_root, 'bkg.png'), bkg)