import detect_text.ocr as ocr from detect_text.Text import Text import numpy as np import cv2 import json import time import os from os.path import join as pjoin def save_detection_json(file_path, texts, img_shape): f_out = open(file_path, 'w') output = {'img_shape': img_shape, 'texts': []} for text in texts: c = {'id': text.id, 'content': text.content} loc = text.location c['column_min'], c['row_min'], c['column_max'], c['row_max'] = loc['left'], loc['top'], loc['right'], loc['bottom'] c['width'] = text.width c['height'] = text.height output['texts'].append(c) json.dump(output, f_out, indent=4) def visualize_texts(org_img, texts, shown_resize_height=None, show=False, write_path=None): img = org_img.copy() for text in texts: text.visualize_element(img, line=2) img_resize = img if shown_resize_height is not None: img_resize = cv2.resize(img, (int(shown_resize_height * (img.shape[1]/img.shape[0])), shown_resize_height)) if show: cv2.imshow('texts', img_resize) cv2.waitKey(0) cv2.destroyWindow('texts') if write_path is not None: cv2.imwrite(write_path, img) def text_sentences_recognition(texts): ''' Merge separate words detected by Google ocr into a sentence ''' changed = True while changed: changed = False temp_set = [] for text_a in texts: merged = False for text_b in temp_set: if text_a.is_on_same_line(text_b, 'h', bias_justify=0.2 * min(text_a.height, text_b.height), bias_gap=2 * max(text_a.word_width, text_b.word_width)): text_b.merge_text(text_a) merged = True changed = True break if not merged: temp_set.append(text_a) texts = temp_set.copy() for i, text in enumerate(texts): text.id = i return texts def merge_intersected_texts(texts): ''' Merge intersected texts (sentences or words) ''' changed = True while changed: changed = False temp_set = [] for text_a in texts: merged = False for text_b in temp_set: if text_a.is_intersected(text_b, bias=2): text_b.merge_text(text_a) merged = True changed = True break if not merged: temp_set.append(text_a) texts = temp_set.copy() return texts def text_cvt_orc_format(ocr_result): texts = [] if ocr_result is not None: for i, result in enumerate(ocr_result): error = False x_coordinates = [] y_coordinates = [] text_location = result['boundingPoly']['vertices'] content = result['description'] for loc in text_location: if 'x' not in loc or 'y' not in loc: error = True break x_coordinates.append(loc['x']) y_coordinates.append(loc['y']) if error: continue location = {'left': min(x_coordinates), 'top': min(y_coordinates), 'right': max(x_coordinates), 'bottom': max(y_coordinates)} texts.append(Text(i, content, location)) return texts def text_cvt_orc_format_paddle(paddle_result): texts = [] for i, line in enumerate(paddle_result): points = np.array(line[0]) location = {'left': int(min(points[:, 0])), 'top': int(min(points[:, 1])), 'right': int(max(points[:, 0])), 'bottom': int(max(points[:, 1]))} content = line[1][0] texts.append(Text(i, content, location)) return texts def text_filter_noise(texts): valid_texts = [] for text in texts: if len(text.content) <= 1 and text.content.lower() not in ['a', ',', '.', '!', '?', '$', '%', ':', '&', '+']: continue valid_texts.append(text) return valid_texts def text_detection(input_file='../data/input/30800.jpg', output_file='../data/output', show=False, method='paddle', paddle_model=None): ''' :param method: google or paddle :param paddle_model: the preload paddle model for paddle ocr ''' start = time.perf_counter() name = input_file.split('/')[-1][:-4] ocr_root = pjoin(output_file, 'ocr') img = cv2.imread(input_file) if method == 'google': print('*** Detect Text through Google OCR ***') ocr_result = ocr.ocr_detection_google(input_file) texts = text_cvt_orc_format(ocr_result) texts = merge_intersected_texts(texts) texts = text_filter_noise(texts) texts = text_sentences_recognition(texts) elif method == 'paddle': # The import of the paddle ocr can be separate to the beginning of the program if you decide to use this method from paddleocr import PaddleOCR print('*** Detect Text through Paddle OCR ***') if paddle_model is None: paddle_model = PaddleOCR(use_angle_cls=True, lang="ch") result = paddle_model.ocr(input_file) texts = text_cvt_orc_format_paddle(result) else: raise ValueError('Method has to be "google" or "paddle"') visualize_texts(img, texts, shown_resize_height=800, show=show, write_path=pjoin(ocr_root, name+'.png')) save_detection_json(pjoin(ocr_root, name+'.json'), texts, img.shape) print("[Text Detection Completed in %.3f s] Input: %s Output: %s" % (time.perf_counter() - start, input_file, pjoin(ocr_root, name+'.json'))) # text_detection()