JoPmt commited on
Commit
4d7c596
·
1 Parent(s): b60ac2b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -0
app.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch, os, gc, random
2
+ import gradio as gr
3
+ from PIL import Image
4
+ from diffusers.utils import load_image
5
+ from accelerate import Accelerator
6
+ from diffusers import StableDiffusionXLPipeline
7
+ accelerator = Accelerator(cpu=True)
8
+
9
+ pipe = accelerator.prepare(StableDiffusionXLPipeline.from_pretrained("segmind/SSD-1B", torch_dtype=torch.float32, use_safetensors=True, variant="fp32"))
10
+ pipe = accelerator.prepare(pipe.to("cpu"))
11
+
12
+ def plex(prompt,neg_prompt,stips):
13
+ apol=[]
14
+
15
+ image = pipe(prompt=prompt, negative_prompt=neg_prompt, num_inference_steps=stips, output_type="pil")
16
+ for i, imge in enumerate(image["images"]):
17
+ apol.append(imge)
18
+ return apol
19
+
20
+ iface = gr.Interface(fn=plex, inputs=[gr.Textbox(label="prompt"),gr.Textbox(label="negative prompt",value="ugly, blurry, poor quality"), gr.Slider(label="num inference steps", minimum=1, step=1, maximum=5, value=2)], outputs=gr.Gallery(label="out", columns=2))
21
+ iface.queue(max_size=1)
22
+ iface.launch(max_threads=1)