Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,12 @@
|
|
1 |
import streamlit as st
|
2 |
-
import transformers
|
3 |
from transformers import AutoProcessor, AutoModelForCausalLM, pipeline
|
4 |
import torch
|
5 |
from PIL import Image
|
6 |
import io
|
7 |
import numpy as np
|
8 |
-
from kokoro import
|
|
|
|
|
9 |
|
10 |
# Load models
|
11 |
# Image-to-Text model
|
@@ -16,40 +17,54 @@ caption_model = AutoModelForCausalLM.from_pretrained("Ertugrul/Qwen2-VL-7B-Capti
|
|
16 |
story_generator = pipeline("text-generation", model="deepseek-ai/DeepSeek-R1-Distill-Qwen-14B")
|
17 |
|
18 |
# Load the text-to-speech model
|
19 |
-
tts_model = KokoroTTS("hexgrad/Kokoro-82M")
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
Args:
|
26 |
-
image_bytes: Bytes of the uploaded image
|
27 |
-
|
28 |
-
Returns:
|
29 |
-
audio (numpy array): Audio waveform
|
30 |
-
sample_rate (int): Sample rate of the audio
|
31 |
-
"""
|
32 |
-
# Convert bytes to PIL Image
|
33 |
-
image = Image.open(io.BytesIO(image_bytes))
|
34 |
-
|
35 |
-
# Step 1: Generate caption from image
|
36 |
-
inputs = processor(images=image, text="Generate a caption:", return_tensors="pt")
|
37 |
-
outputs = caption_model.generate(**inputs)
|
38 |
-
caption = processor.decode(outputs[0], skip_special_tokens=True)
|
39 |
-
|
40 |
-
# Step 2: Generate story from caption
|
41 |
-
prompt = f"Based on the description '{caption}', tell a short story for children aged 3 to 10 in no more than 100 words."
|
42 |
-
story_output = story_generator(prompt, max_length=150, num_return_sequences=1)
|
43 |
-
story = story_output[0]["generated_text"]
|
44 |
-
|
45 |
-
# Truncate to 100 words if necessary
|
46 |
-
story_words = story.split()
|
47 |
-
if len(story_words) > 100:
|
48 |
-
story = " ".join(story_words[:100])
|
49 |
-
|
50 |
-
# Step 3: Generate audio from story using Kokoro TTS
|
51 |
-
audio, sample_rate = tts_model.generate(story)
|
52 |
-
return audio, sample_rate
|
53 |
|
54 |
# Streamlit UI
|
55 |
st.title("Image to Story Audio Generator")
|
@@ -62,35 +77,7 @@ if uploaded_file is not None:
|
|
62 |
st.image(image_bytes, caption="Uploaded Image", use_column_width=True)
|
63 |
|
64 |
with st.spinner("Generating story audio..."):
|
65 |
-
audio, sample_rate = generate_story_audio(image_bytes)
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
# Simple WAV header for mono 32-bit float audio (minimal implementation)
|
70 |
-
def write_wav_header(buffer, data, sample_rate):
|
71 |
-
buffer.write(b'RIFF')
|
72 |
-
buffer.write((36 + len(data) * 4).to_bytes(4, 'little')) # Chunk size
|
73 |
-
buffer.write(b'WAVE')
|
74 |
-
buffer.write(b'fmt ')
|
75 |
-
buffer.write((16).to_bytes(4, 'little')) # Subchunk1 size
|
76 |
-
buffer.write((3).to_bytes(2, 'little')) # Audio format (3 = IEEE float)
|
77 |
-
buffer.write((1).to_bytes(2, 'little')) # Num channels (mono)
|
78 |
-
buffer.write(sample_rate.to_bytes(4, 'little')) # Sample rate
|
79 |
-
buffer.write((sample_rate * 4).to_bytes(4, 'little')) # Byte rate
|
80 |
-
buffer.write((4).to_bytes(2, 'little')) # Block align
|
81 |
-
buffer.write((32).to_bytes(2, 'little')) # Bits per sample
|
82 |
-
buffer.write(b'data')
|
83 |
-
buffer.write((len(data) * 4).to_bytes(4, 'little')) # Data size
|
84 |
-
data.tofile(buffer) # Write audio data
|
85 |
-
|
86 |
-
write_wav_header(audio_buffer, audio, sample_rate)
|
87 |
-
audio_buffer.seek(0)
|
88 |
-
|
89 |
-
# Provide audio playback and download
|
90 |
-
st.audio(audio_buffer, format="audio/wav")
|
91 |
-
st.download_button(
|
92 |
-
label="Download Story Audio",
|
93 |
-
data=audio_buffer,
|
94 |
-
file_name="story_audio.wav",
|
95 |
-
mime="audio/wav"
|
96 |
-
)
|
|
|
1 |
import streamlit as st
|
|
|
2 |
from transformers import AutoProcessor, AutoModelForCausalLM, pipeline
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
import io
|
6 |
import numpy as np
|
7 |
+
from kokoro import KPipeline # for text-to-speech
|
8 |
+
from IPython.display import display, Audio
|
9 |
+
import soundfile as sf
|
10 |
|
11 |
# Load models
|
12 |
# Image-to-Text model
|
|
|
17 |
story_generator = pipeline("text-generation", model="deepseek-ai/DeepSeek-R1-Distill-Qwen-14B")
|
18 |
|
19 |
# Load the text-to-speech model
|
|
|
20 |
|
21 |
+
for i, (gs, ps, audio) in enumerate(audio_generator):
|
22 |
+
print(i) # i => index
|
23 |
+
print(gs) # gs => graphemes/text
|
24 |
+
print(ps) # ps => phonemes
|
25 |
+
display(Audio(data=audio, rate=24000, autoplay=i==0))
|
26 |
+
sf.write(f'{i}.wav', audio, 24000) # save each audio file
|
27 |
+
|
28 |
+
|
29 |
+
def generate_text(image_bytes):
|
30 |
+
# load image-to-text model
|
31 |
+
processor = AutoProcessor.from_pretrained("Ertugrul/Qwen2-VL-7B-Captioner-Relaxed")
|
32 |
+
caption_model = AutoModelForCausalLM.from_pretrained("Ertugrul/Qwen2-VL-7B-Captioner-Relaxed")
|
33 |
+
|
34 |
+
# Convert bytes to PIL Image
|
35 |
+
image = Image.open(io.BytesIO(image_bytes))
|
36 |
+
|
37 |
+
# Step 1: Generate text from image
|
38 |
+
inputs = processor(images=image, text="Generate a caption:", return_tensors="pt")
|
39 |
+
outputs = caption_model.generate(**inputs)
|
40 |
+
text = processor.decode(outputs[0], skip_special_tokens=True)
|
41 |
+
return text
|
42 |
+
|
43 |
+
def generate_story(text):
|
44 |
+
# load text-to-story model
|
45 |
+
story_generator = pipeline("text-generation", model="deepseek-ai/DeepSeek-R1-Distill-Qwen-14B")
|
46 |
+
|
47 |
+
# Step 2: Generate story from caption
|
48 |
+
prompt = f"Based on the description '{text}', tell a short story for children aged 3 to 10 in no more than 100 words."
|
49 |
+
story_output = story_generator(prompt, max_length=150, num_return_sequences=1)
|
50 |
+
story = story_output[0]["generated_text"]
|
51 |
+
return story
|
52 |
+
|
53 |
+
|
54 |
+
def generate_audio(story):
|
55 |
+
audio_pipeline = KPipeline(lang_code='a')
|
56 |
+
audio_generator = audio_pipeline(
|
57 |
+
story, voice='af_heart', # <= change voice here
|
58 |
+
speed=1, split_pattern=r'\n+'
|
59 |
+
)
|
60 |
+
for i, (gs, ps, audio) in enumerate(audio_generator):
|
61 |
+
print(i) # i => index
|
62 |
+
print(gs) # gs => graphemes/text
|
63 |
+
print(ps) # ps => phonemes
|
64 |
+
display(Audio(data=audio, rate=24000, autoplay=i==0))
|
65 |
+
sf.write(f'{i}.wav', audio, 24000) # save each audio file
|
66 |
+
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
# Streamlit UI
|
70 |
st.title("Image to Story Audio Generator")
|
|
|
77 |
st.image(image_bytes, caption="Uploaded Image", use_column_width=True)
|
78 |
|
79 |
with st.spinner("Generating story audio..."):
|
80 |
+
#audio, sample_rate = generate_story_audio(image_bytes)
|
81 |
+
text = generate_text(image_bytes)
|
82 |
+
story = generate_story(text)
|
83 |
+
generate_audio(story)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|