File size: 7,401 Bytes
3190e1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from dataclasses import dataclass, field
from typing import List, Dict, Optional, Any
import json
import re
from pathlib import Path
from pipeline_config import PipelineConfig

@dataclass
class TaskmasterDialogue:
    """
    Structured representation of a Taskmaster dialogue
    """
    conversation_id: str
    instruction_id: Optional[str]
    scenario: Optional[str]
    domain: Optional[str]
    turns: List[Dict[str, Any]]
    original_metadata: Dict[str, Any] = field(default_factory=dict)
    
    def __str__(self):
        return f"TaskmasterDialogue(conversation_id={self.conversation_id}, turns={len(self.turns)} turns)"
    
    def validate(self) -> bool:
        return bool(self.conversation_id and isinstance(self.turns, list))

class TaskmasterProcessor:
    """
    Handles processing and preparation of Taskmaster dataset dialogues
    """
    config: PipelineConfig
    use_ontology: bool = False  # Whether to load and use ontology
    ontology: Optional[Dict[str, Any]] = None  # Holds ontology data if loaded
    domains: set = field(default_factory=set)  # Tracks unique domains
    scenarios: set = field(default_factory=set)  # Tracks unique scenarios
    
    def __init__(self, config: PipelineConfig, use_ontology: bool = False):
        self.config = config
        self.use_ontology = use_ontology
        self.ontology = None
        self.domains = set()
        self.scenarios = set()
        
    def load_dataset(self, base_dir: str, max_examples: Optional[int] = None) -> List[TaskmasterDialogue]:
        """
        Load and parse Taskmaster JSON dataset.
        Handles self-dialogs, woz-dialogs, and ontology files.
        """
        required_files = {
            "self-dialogs": "self-dialogs.json",
            "woz-dialogs": "woz-dialogs.json",
            "ontology": "ontology.json",
        }
        
        # Check for required files
        missing_files = [name for name, path in required_files.items() if not Path(base_dir, path).exists()]
        if missing_files:
            raise FileNotFoundError(f"Missing required taskmaster files: {missing_files}")
        
        # load ontology
        ontology_path = Path(base_dir, required_files['ontology'])
        with open(ontology_path, 'r', encoding='utf-8') as f:
            self.ontology = json.load(f)
            
        processed_dialogues = []
        for file_key in ["self-dialogs", "woz-dialogs"]:
            file_path = Path(base_dir, required_files[file_key])
            with open(file_path, 'r', encoding='utf-8') as f:
                raw_data = json.load(f)
            
            for dialogue in raw_data:
                # Extract core dialogue components
                conversation_id = dialogue.get('conversation_id', '')
                instruction_id = dialogue.get('instruction_id', None)
                
                if 'utterances' in dialogue:
                    turns = self._process_utterances(dialogue['utterances'])
                    scenario = dialogue.get('scenario', '')
                    domain = self._extract_domain(scenario)
                else:
                    turns = []
                    scenario = ''
                    domain = ''
                
                # Store metadata
                metadata = {k: v for k, v in dialogue.items() 
                            if k not in {'conversation_id', 'instruction_id', 'utterances'}}
                
                # Create structured dialogue object
                processed_dialogue = TaskmasterDialogue(
                    conversation_id=conversation_id,
                    instruction_id=instruction_id,
                    scenario=scenario,
                    domain=domain,
                    turns=turns,
                    original_metadata=metadata
                )
                
                processed_dialogues.append(processed_dialogue)
                
                # Update domain and scenario tracking
                if domain:
                    self.domains.add(domain)
                if scenario:
                    self.scenarios.add(scenario)
                    
                if max_examples and len(processed_dialogues) >= max_examples:
                    break
        
        return processed_dialogues
    
    def _process_utterances(self, utterances: List[Dict]) -> List[Dict]:
        """
        Process utterances into a standardized format
        """
        processed_turns = []
        
        for utterance in utterances:
            # Map Taskmaster speaker roles to your expected format
            speaker = 'assistant' if utterance.get('speaker') == 'ASSISTANT' else 'user'
            
            # Extract and clean the text
            text = utterance.get('text', '').strip()
            
            # Extract any segments or annotations if present
            segments = utterance.get('segments', [])
            
            # Create the processed turn
            turn = {
                'speaker': speaker,
                'text': text,
                'original_speaker': utterance.get('speaker', ''),
                'segments': segments,
                'metadata': {k: v for k, v in utterance.items() 
                           if k not in {'speaker', 'text', 'segments'}}
            }
            
            processed_turns.append(turn)
        
        return processed_turns
    
    def _extract_domain(self, scenario: str) -> str:
        """
        Extract domain from scenario description
        """
        domain_patterns = {
            'restaurant': r'\b(restaurant|dining|food|reservation)\b',
            'movie': r'\b(movie|cinema|film|ticket)\b',
            'ride_share': r'\b(ride|taxi|uber|lyft)\b',
            'coffee': r'\b(coffee|café|cafe|starbucks)\b',
            'pizza': r'\b(pizza|delivery|order food)\b',
            'auto': r'\b(car|vehicle|repair|maintenance)\b',
        }
        
        scenario_lower = scenario.lower()
        
        for domain, pattern in domain_patterns.items():
            if re.search(pattern, scenario_lower):
                return domain
                
        return 'other'
    
    def convert_to_pipeline_format(self, taskmaster_dialogues: List[TaskmasterDialogue]) -> List[Dict]:
        """
        Convert TaskmasterDialogues to the format expected by the ProcessingPipeline
        """
        pipeline_dialogues = []
        
        for dialogue in taskmaster_dialogues:
            # Convert turns to the expected format
            processed_turns = []
            for turn in dialogue.turns:
                if turn['text'].strip():  # Skip empty turns
                    processed_turns.append({
                        'speaker': turn['speaker'],
                        'text': turn['text']
                    })
            
            # Create dialogue in pipeline format
            pipeline_dialogue = {
                'dialogue_id': dialogue.conversation_id,
                'turns': processed_turns,
                'metadata': {
                    'instruction_id': dialogue.instruction_id,
                    'scenario': dialogue.scenario,
                    'domain': dialogue.domain,
                    **dialogue.original_metadata
                }
            }
            
            pipeline_dialogues.append(pipeline_dialogue)
            
        return pipeline_dialogues