File size: 6,338 Bytes
3190e1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
from datetime import datetime
from pathlib import Path
from typing import List, Dict, Optional
import json
import re
import hashlib
import pickle
import spacy
from tqdm import tqdm
from pipeline_config import PipelineConfig
from dialogue_augmenter import DialogueAugmenter
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
class ProcessingPipeline:
"""
Complete pipeline combining validation, optimization, and augmentation.
"""
def __init__(self, config: Optional[PipelineConfig] = None):
self.config = config or PipelineConfig()
self.nlp = spacy.load("en_core_web_sm", disable=['parser', 'ner'])
self.augmenter = DialogueAugmenter(self.nlp, self.config)
self.num_threads = self.config.batch_size
self.cache_dir = Path("./cache")
self.cache_dir.mkdir(exist_ok=True)
def process_dataset(self, dialogues: List[Dict]) -> List[Dict]:
"""
Process entire dataset through the pipeline.
"""
print(f"Processing {len(dialogues)} dialogues")
start_time = datetime.now()
# Check cache
if self.config.use_cache:
cache_path = self._get_cache_path(dialogues)
if cache_path.exists():
print("Loading from cache...")
with open(cache_path, 'rb') as f:
return pickle.load(f)
# Validate and clean
valid_dialogues = self._process_validation(
dialogues,
self._validate_and_clean_dialogue,
"validating and cleaning"
)
if not valid_dialogues:
raise ValueError("Dialogue validation resulted in an empty dataset.")
deduplicated_dialogues = self._deduplicate_dialogues(valid_dialogues)
# Augment dialogues
all_processed_dialogues = []
for dialogue in deduplicated_dialogues:
augmented = self.augmenter.augment_dialogue(dialogue)
all_processed_dialogues.extend(augmented)
# Save to cache
if self.config.use_cache:
with open(cache_path, 'wb') as f:
pickle.dump(all_processed_dialogues, f)
processing_time = datetime.now() - start_time
print(f"Processing completed in {processing_time}")
print(f"Generated {len(all_processed_dialogues)} total dialogues")
return all_processed_dialogues
def _deduplicate_dialogues(self, dialogues: List[Dict], threshold: float = 0.9) -> List[Dict]:
"""
Deduplicate dialogues based on text similarity.
"""
print("Deduplicating dialogues...")
if not dialogues:
print("No dialogues provided for deduplication.")
return []
# Combine turns into single text for similarity comparison
texts = [" ".join(turn['text'] for turn in dialogue['turns']) for dialogue in dialogues]
tfidf = TfidfVectorizer().fit_transform(texts)
sim_matrix = cosine_similarity(tfidf)
unique_indices = set()
for i, row in enumerate(sim_matrix):
if i not in unique_indices:
similar_indices = [j for j, sim in enumerate(row) if sim > threshold and j != i]
unique_indices.add(i)
unique_indices.difference_update(similar_indices)
deduplicated_dialogues = [dialogues[i] for i in unique_indices]
print(f"Deduplication complete. Reduced from {len(dialogues)} to {len(deduplicated_dialogues)} dialogues.")
return deduplicated_dialogues
def _validate_and_clean_dialogue(self, dialogue: Dict) -> Optional[Dict]:
"""
Validate and clean a single dialogue.
"""
try:
# Check required fields
if not all(field in dialogue for field in self.config.required_fields):
return None
# Process turns
cleaned_turns = []
for turn in dialogue['turns']:
if self._validate_turn(turn):
cleaned_turn = {
'speaker': turn['speaker'],
'text': self._clean_text(turn['text'])
}
cleaned_turns.append(cleaned_turn)
if cleaned_turns:
return {
'dialogue_id': dialogue['dialogue_id'],
'turns': cleaned_turns
}
return None
except Exception as e:
print(f"Error processing dialogue {dialogue.get('dialogue_id', 'unknown')}: {str(e)}")
return None
def _validate_turn(self, turn: Dict) -> bool:
"""
Validate a single speaking turn.
"""
return (
turn['speaker'] in self.config.allowed_speakers and
self.config.min_length <= len(turn['text']) <= self.config.max_length
)
def _clean_text(self, text: str) -> str:
"""
Clean and normalize text.
"""
# Remove excessive whitespace
text = re.sub(r'\s+', ' ', text.strip())
# Normalize quotes and apostrophes
text = re.sub(r'[βΒ΄`]', "'", text)
text = re.sub(r'[ββ]', '"', text)
# Remove control characters
text = "".join(char for char in text if ord(char) >= 32 or char == '\n')
return text
def _process_validation(self, items: List, func, description: str) -> List:
"""
Process items sequentially with a progress bar.
"""
results = []
print(f"Starting {description}")
for item in tqdm(items, desc=description):
try:
result = func(item)
if result is not None:
results.append(result)
except Exception as e:
print(f"Error processing item: {str(e)}")
print(f"Completed {description}. Processed {len(results)} items successfully")
return results
def _get_cache_path(self, data: List[Dict]) -> Path:
"""
Generate cache file path based on data hash.
"""
data_str = json.dumps(data, sort_keys=True)
hash_value = hashlib.md5(data_str.encode()).hexdigest()
return self.cache_dir / f"cache_{hash_value}.pkl" |