File size: 11,396 Bytes
f7b283c
 
7a0020b
5b413d1
7a0020b
 
f7b283c
 
7a0020b
f7b283c
7a0020b
 
 
 
 
 
 
 
5b413d1
f7b283c
 
 
5b413d1
f7b283c
7a0020b
f7b283c
 
 
 
5b413d1
7a0020b
 
f7b283c
 
 
7a0020b
 
 
f7b283c
 
 
 
 
 
 
 
 
 
 
 
 
7a0020b
 
f7b283c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b413d1
f7b283c
7a0020b
 
 
f7b283c
 
 
5b413d1
f7b283c
 
 
7a0020b
 
 
5b413d1
f7b283c
 
 
 
5b413d1
7a0020b
f7b283c
7a0020b
 
f7b283c
 
7a0020b
 
 
 
 
5b413d1
f7b283c
 
7a0020b
 
 
 
 
 
 
 
 
 
 
 
f7b283c
5b413d1
f7b283c
5b413d1
f7b283c
7a0020b
5b413d1
7a0020b
 
5b413d1
7a0020b
f7b283c
5b413d1
7a0020b
f7b283c
 
 
5b413d1
f7b283c
 
 
7a0020b
f7b283c
 
 
5b413d1
7a0020b
f7b283c
 
 
 
5b413d1
f7b283c
 
 
 
7a0020b
 
 
 
 
 
 
 
 
 
f7b283c
 
7a0020b
 
 
 
 
 
 
5b413d1
f7b283c
7a0020b
 
 
 
f7b283c
 
 
7a0020b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7b283c
5b413d1
7a0020b
f7b283c
 
7a0020b
 
 
 
 
 
5b413d1
7a0020b
f7b283c
7a0020b
 
 
 
f7b283c
 
 
 
 
 
 
 
 
7a0020b
 
 
 
 
 
 
 
 
 
 
5b413d1
7a0020b
 
 
 
 
f7b283c
 
7a0020b
 
 
 
 
 
 
f7b283c
5b413d1
7a0020b
f7b283c
 
7a0020b
f7b283c
 
5b413d1
7a0020b
 
f7b283c
7a0020b
f7b283c
7a0020b
f7b283c
5b413d1
7a0020b
 
f7b283c
7a0020b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
from typing import Dict, List, Tuple, Any, Optional
import numpy as np
import random
from logger_config import config_logger
from cross_encoder_reranker import CrossEncoderReranker

logger = config_logger(__name__)


class ChatbotValidator:
    """
    Handles automated validation and performance analysis for the chatbot.

    This validator executes domain-specific test queries, obtains candidate 
    responses via the chatbot, then evaluates them with a quality checker. 
    It aggregates metrics across queries and domains, logs intermediate 
    results, and returns a comprehensive summary.
    """

    def __init__(self, chatbot, quality_checker):
        """
        Initialize the validator.

        Args:
            chatbot: RetrievalChatbot instance for inference
            quality_checker: ResponseQualityChecker instance
        """
        self.chatbot = chatbot
        self.quality_checker = quality_checker

        # Basic domain-specific test queries (easy examples)
        # Taskmaster-1 and Schema-Guided style
        self.domain_queries = {
            'restaurant': [
                "I'd like to make a reservation for dinner tonight.",
                "Can you book a table for 4 at an Italian restaurant?",
                "Is there any availability to dine tomorrow at 7pm?",
                "I'd like to cancel my reservation for tonight.",
                "What's the wait time for a table right now?"
            ],
            'movie_tickets': [
                "I want to buy tickets for the new Marvel movie.",
                "Are there any showings of Avatar after 6pm?",
                "Can I get 3 tickets for the 8pm show?",
                "What movies are playing this weekend?",
                "Do you have any matinee showtimes available?"
            ],
            'rideshare': [
                "I need a ride from the airport to downtown.",
                "How much would it cost to get to the mall?",
                "Can you book a car for tomorrow morning?",
                "Is there a driver available right now?",
                "What's the estimated arrival time for the driver?"
            ],
            'services': [
                "I need to schedule an oil change for my car.",
                "When can I bring my car in for maintenance?",
                "Do you have any openings for auto repair today?",
                "How long will the service take?",
                "Can I get an estimate for brake repair?"
            ],
            'events': [
                "I need tickets to the concert this weekend.",
                "What events are happening near me?",
                "Can I book seats for the basketball game?",
                "Are there any comedy shows tonight?",
                "How much are tickets to the theater?"
            ]
        }

    def run_validation(
        self,
        num_examples: int = 5,
        top_k: int = 10,
        domains: Optional[List[str]] = None,
        randomize: bool = False,
        seed: int = 42
    ) -> Dict[str, Any]:
        """
        Run comprehensive validation across specified domains.

        Args:
            num_examples: Number of test queries per domain
            top_k: Number of responses to retrieve for each query
            domains: Optional list of domain keys to test. If None, test all.
            randomize: If True, randomly select queries from the domain lists
            seed: Random seed for consistent sampling if randomize=True

        Returns:
            Dict containing detailed validation metrics and domain-specific performance
        """
        logger.info("\n=== Running Enhanced Automatic Validation ===")

        # Select which domains to test
        test_domains = domains if domains else list(self.domain_queries.keys())

        # Initialize results
        metrics_history = []
        domain_metrics = {}
        
        reranker = CrossEncoderReranker(model_name="cross-encoder/ms-marco-MiniLM-L-12-v2")

        # Prepare random selection if needed
        rng = random.Random(seed)

        # Run validation for each domain
        for domain in test_domains:
            # Avoid errors if domain key missing
            if domain not in self.domain_queries:
                logger.warning(f"Domain '{domain}' not found in domain_queries. Skipping.")
                continue

            all_queries = self.domain_queries[domain]
            if randomize:
                queries = rng.sample(all_queries, min(num_examples, len(all_queries)))
            else:
                queries = all_queries[:num_examples]

            # Store domain-level metrics
            domain_metrics[domain] = []

            logger.info(f"\n=== Testing {domain.title()} Domain ===")

            for i, query in enumerate(queries, 1):
                logger.info(f"\nTest Case {i}: {query}")

                # Retrieve top_k responses (including cross-encoder re-ranking if available)
                responses = self.chatbot.retrieve_responses_cross_encoder(query, top_k=top_k, reranker=reranker)

                # Evaluate with quality checker
                quality_metrics = self.quality_checker.check_response_quality(query, responses)

                # Save domain info
                quality_metrics['domain'] = domain
                metrics_history.append(quality_metrics)
                domain_metrics[domain].append(quality_metrics)

                # Detailed logging
                self._log_validation_results(query, responses, quality_metrics, i)

        # Final aggregation
        aggregate_metrics = self._calculate_aggregate_metrics(metrics_history)
        domain_analysis = self._analyze_domain_performance(domain_metrics)
        confidence_analysis = self._analyze_confidence_distribution(metrics_history)

        # Combine into one dictionary
        aggregate_metrics.update({
            'domain_performance': domain_analysis,
            'confidence_analysis': confidence_analysis
        })

        self._log_validation_summary(aggregate_metrics)
        return aggregate_metrics

    def _calculate_aggregate_metrics(self, metrics_history: List[Dict]) -> Dict[str, float]:
        """
        Calculate comprehensive aggregate metrics over all tested queries.
        """
        if not metrics_history:
            logger.warning("No metrics to aggregate. Returning empty summary.")
            return {}

        top_scores = [m.get('top_score', 0.0) for m in metrics_history]

        # The length-based metrics are robust to missing or zero-length data
        metrics = {
            'num_queries_tested': len(metrics_history),
            'avg_top_response_score': np.mean(top_scores),
            'avg_diversity': np.mean([m.get('response_diversity', 0.0) for m in metrics_history]),
            'avg_relevance': np.mean([m.get('query_response_relevance', 0.0) for m in metrics_history]),
            'avg_length_score': np.mean([m.get('response_length_score', 0.0) for m in metrics_history]),
            'avg_score_gap': np.mean([m.get('top_3_score_gap', 0.0) for m in metrics_history]),
            'confidence_rate': np.mean([1.0 if m.get('is_confident', False) else 0.0 
                                        for m in metrics_history]),

            # Additional statistical metrics
            'median_top_score': np.median(top_scores),
            'score_std': np.std(top_scores),
            'min_score': np.min(top_scores),
            'max_score': np.max(top_scores)
        }
        return metrics

    def _analyze_domain_performance(self, domain_metrics: Dict[str, List[Dict]]) -> Dict[str, Dict[str, float]]:
        """
        Analyze performance by domain, returning a nested dict.
        """
        analysis = {}

        for domain, metrics_list in domain_metrics.items():
            if not metrics_list:
                analysis[domain] = {}
                continue

            top_scores = [m.get('top_score', 0.0) for m in metrics_list]

            analysis[domain] = {
                'confidence_rate': np.mean([1.0 if m.get('is_confident', False) else 0.0 
                                            for m in metrics_list]),
                'avg_relevance': np.mean([m.get('query_response_relevance', 0.0) 
                                          for m in metrics_list]),
                'avg_diversity': np.mean([m.get('response_diversity', 0.0) 
                                          for m in metrics_list]),
                'avg_top_score': np.mean(top_scores),
                'num_samples': len(metrics_list)
            }

        return analysis

    def _analyze_confidence_distribution(self, metrics_history: List[Dict]) -> Dict[str, float]:
        """
        Analyze the distribution of top scores to gauge system confidence levels.
        """
        if not metrics_history:
            return {'percentile_25': 0.0, 'percentile_50': 0.0, 
                    'percentile_75': 0.0, 'percentile_90': 0.0}

        scores = [m.get('top_score', 0.0) for m in metrics_history]
        return {
            'percentile_25': float(np.percentile(scores, 25)),
            'percentile_50': float(np.percentile(scores, 50)),
            'percentile_75': float(np.percentile(scores, 75)),
            'percentile_90': float(np.percentile(scores, 90))
        }

    def _log_validation_results(
        self, 
        query: str, 
        responses: List[Tuple[str, float]], 
        metrics: Dict[str, Any],
        case_num: int
    ):
        """
        Log detailed validation results for each test case.
        """
        domain = metrics.get('domain', 'Unknown')
        is_confident = metrics.get('is_confident', False)

        logger.info(f"Domain: {domain} | Confidence: {'Yes' if is_confident else 'No'}")
        logger.info("Quality Metrics:")
        for k, v in metrics.items():
            if isinstance(v, (int, float)):
                logger.info(f"  {k}: {v:.4f}")

        logger.info("Top 3 Responses:")
        for i, (resp_text, score) in enumerate(responses[:3], 1):
            logger.info(f"{i}) Score: {score:.4f} | {resp_text}")
            if i == 1 and not is_confident:
                logger.info("   [Low Confidence on Top Response]")

    def _log_validation_summary(self, metrics: Dict[str, Any]):
        """
        Log a summary of all validation metrics and domain performance.
        """
        if not metrics:
            logger.info("No metrics to summarize.")
            return

        logger.info("\n=== Validation Summary ===")

        # Overall
        logger.info("\nOverall Metrics:")
        for metric, value in metrics.items():
            # Skip sub-dicts here
            if isinstance(value, (int, float)):
                logger.info(f"{metric}: {value:.4f}")

        # Domain performance
        domain_perf = metrics.get('domain_performance', {})
        logger.info("\nDomain Performance:")
        for domain, domain_stats in domain_perf.items():
            logger.info(f"\n{domain.title()}:")
            for metric, value in domain_stats.items():
                logger.info(f"  {metric}: {value:.4f}")

        # Confidence distribution
        conf_analysis = metrics.get('confidence_analysis', {})
        logger.info("\nConfidence Distribution:")
        for pct, val in conf_analysis.items():
            logger.info(f"  {pct}: {val:.4f}")