File size: 12,946 Bytes
3190e1e bc503de 3190e1e bc503de 3190e1e bc503de 300fe5d bc503de 3190e1e bc503de 3190e1e bc503de 3190e1e bc503de 3190e1e bc503de 300fe5d bc503de 3190e1e 300fe5d bc503de 300fe5d bc503de 300fe5d bc503de 300fe5d bc503de 3190e1e bc503de 300fe5d bc503de 300fe5d bc503de 3190e1e bc503de 300fe5d bc503de 300fe5d bc503de 3190e1e 300fe5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
from datetime import datetime
from pathlib import Path
from typing import List, Dict, Optional
import json
import re
import hashlib
import spacy
import torch
from tqdm import tqdm
from pipeline_config import PipelineConfig
from dialogue_augmenter import DialogueAugmenter
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from typing import Set
class ProcessingPipeline:
"""
Complete pipeline combining validation, optimization, and augmentation.
"""
def __init__(self, config: Optional[PipelineConfig] = None):
self.config = config or PipelineConfig()
self.nlp = spacy.load("en_core_web_sm", disable=['parser', 'ner'])
self.augmenter = DialogueAugmenter(self.nlp, self.config)
self.num_threads = self.config.batch_size
self.cache_dir = Path("./cache")
self.cache_dir.mkdir(exist_ok=True)
self.output_dir = Path("processed_outputs")
self.output_dir.mkdir(exist_ok=True)
self.checkpoint_file = self.output_dir / "processing_checkpoint.json"
self.batch_size = self.config.batch_size
self.use_gpu = torch.cuda.is_available()
self.batch_size = 32 if self.use_gpu else 8
self.use_multiprocessing = not self.use_gpu
# Counters for grouping batches
self.batch_counter = 0 # Count batches since last group combine
self.batch_group_number = 0 # How many groups have been created
if self.config.debug:
print(f"ProcessingPipeline initialized with:")
print(f"- GPU available: {self.use_gpu}")
print(f"- Batch size: {self.batch_size}")
print(f"- Using multiprocessing: {self.use_multiprocessing}")
def _save_batch(self, batch_results: List[Dict], batch_num: int) -> Path:
"""Save a batch of results to a separate JSON file"""
batch_file = self.output_dir / f"batch_{batch_num:04d}.json"
with open(batch_file, 'w') as f:
json.dump(batch_results, f)
return batch_file
def _load_checkpoint(self) -> set:
"""Load set of processed dialogue IDs from checkpoint"""
if self.checkpoint_file.exists():
with open(self.checkpoint_file, 'r') as f:
return set(json.load(f))
return set()
def _update_checkpoint(self, processed_ids: set):
"""Update checkpoint with newly processed IDs"""
with open(self.checkpoint_file, 'w') as f:
json.dump(list(processed_ids), f)
def _process_batch(self, batch: List[Dict]) -> List[Dict]:
"""Process batch with optimized model calls"""
results = []
try:
if self.use_gpu:
results = self.augmenter.process_batch(batch)
else:
# Collect all texts that need processing
all_texts = []
text_to_dialogue_map = {}
for dialogue in batch:
for turn in dialogue['turns']:
all_texts.append(turn['text'])
text_to_dialogue_map[turn['text']] = dialogue['dialogue_id']
# Batch process embeddings
self.augmenter._compute_batch_embeddings(all_texts)
# Process dialogues with cached embeddings
for dialogue in batch:
try:
augmented = self.augmenter.augment_dialogue(dialogue)
results.extend(augmented)
except Exception as e:
print(f"Error processing dialogue {dialogue.get('dialogue_id', 'unknown')}: {str(e)}")
continue
except Exception as e:
print(f"Error processing batch: {str(e)}")
return results
def _combine_intermediate_batches(self):
"""
Combine all current batch_*.json files into a single batch_group_XXXX.json file,
then remove the batch_*.json files.
"""
batch_files = sorted(self.output_dir.glob("batch_*.json"))
if not batch_files:
return None # No files to combine
combined_data = []
for bf in batch_files:
with open(bf, 'r') as f:
combined_data.extend(json.load(f))
bf.unlink() # Remove the individual batch file after reading
self.batch_group_number += 1
group_file = self.output_dir / f"batch_group_{self.batch_group_number:04d}.json"
with open(group_file, 'w') as f:
json.dump(combined_data, f)
return group_file
def combine_results(self) -> Path:
"""Combine all batch_group_*.json files into final output"""
all_results = []
group_files = sorted(self.output_dir.glob("batch_group_*.json"))
print(f"Combining {len(group_files)} group files...")
for group_file in tqdm(group_files):
with open(group_file, 'r') as f:
group_data = json.load(f)
all_results.extend(group_data)
# Save combined results
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
final_output = self.output_dir / f"augmented_dataset_{timestamp}.json"
with open(final_output, 'w') as f:
json.dump(all_results, f)
if self.config.debug:
print(f"Combined {len(all_results)} dialogues into {final_output}")
return final_output
def process_dataset(self, dialogues: List[Dict]) -> Path:
"""Process dataset with hardware-appropriate optimizations and progress tracking"""
processed_ids = self._load_checkpoint()
# Filter out already processed dialogues
remaining_dialogues = [d for d in dialogues
if d['dialogue_id'] not in processed_ids]
total_dialogues = len(dialogues)
remaining_count = len(remaining_dialogues)
processed_count = total_dialogues - remaining_count
print("\nDataset Processing Status:")
print(f"Total dialogues in dataset: {total_dialogues}")
print(f"Previously processed: {processed_count}")
print(f"Remaining to process: {remaining_count}")
print("-" * 50)
# Process in batches with progress bar
for batch_num in tqdm(range(0, len(remaining_dialogues), self.batch_size),
desc="Processing batches",
total=(len(remaining_dialogues) + self.batch_size - 1) // self.batch_size):
batch = remaining_dialogues[batch_num:batch_num + self.batch_size]
current_position = processed_count + batch_num + len(batch)
total_progress = (current_position / total_dialogues) * 100
print('\033[K', end='')
print(f"Processing: {current_position}/{total_dialogues} dialogues "
f"({total_progress:.1f}% complete)")
print(f"Current batch: {batch_num//self.batch_size + 1} of "
f"{(len(remaining_dialogues) + self.batch_size - 1) // self.batch_size}")
print("-" * 50)
# Process batch
batch_results = self._process_batch(batch)
if batch_results:
self._save_batch(batch_results, batch_num)
batch_ids = {d['dialogue_id'] for d in batch}
processed_ids.update(batch_ids)
self._update_checkpoint(processed_ids)
# Increment batch counter and combine if needed
self.batch_counter += 1
if self.batch_counter == 25:
# Combine these 25 batches into a group file
self._combine_intermediate_batches()
self.batch_counter = 0 # Reset counter after grouping
# If there are leftover batches less than 25
# combine them into one final group file
if self.batch_counter > 0:
self._combine_intermediate_batches()
self.batch_counter = 0
print("\n" + "-" * 50)
print("Processing complete. Combining results...")
return self.combine_results()
def cleanup(self):
"""Clean up intermediate files after successful processing"""
# Clean up any leftover batch files (should not exist if logic is correct)
batch_files = list(self.output_dir.glob("batch_*.json"))
for file in batch_files:
try:
file.unlink()
except Exception as e:
print(f"Error deleting {file}: {e}")
# We can also remove batch_group_*.json if desired after final combine
# but that might not be necessary if we want to keep them.
if self.checkpoint_file.exists():
try:
self.checkpoint_file.unlink()
except Exception as e:
print(f"Error deleting checkpoint file: {e}")
def _deduplicate_dialogues(self, dialogues: List[Dict], threshold: float = 0.9) -> List[Dict]:
"""
Deduplicate dialogues based on text similarity.
"""
print("Deduplicating dialogues...")
if not dialogues:
print("No dialogues provided for deduplication.")
return []
# Combine turns into single text for similarity comparison
texts = [" ".join(turn['text'] for turn in dialogue['turns']) for dialogue in dialogues]
tfidf = TfidfVectorizer().fit_transform(texts)
sim_matrix = cosine_similarity(tfidf)
unique_indices = set()
for i, row in enumerate(sim_matrix):
if i not in unique_indices:
similar_indices = [j for j, sim in enumerate(row) if sim > threshold and j != i]
unique_indices.add(i)
unique_indices.difference_update(similar_indices)
deduplicated_dialogues = [dialogues[i] for i in unique_indices]
print(f"Deduplication complete. Reduced from {len(dialogues)} to {len(deduplicated_dialogues)} dialogues.")
return deduplicated_dialogues
def _validate_and_clean_dialogue(self, dialogue: Dict) -> Optional[Dict]:
"""
Validate and clean a single dialogue.
"""
try:
# Check required fields
if not all(field in dialogue for field in self.config.required_fields):
return None
# Process turns
cleaned_turns = []
for turn in dialogue['turns']:
if self._validate_turn(turn):
cleaned_turn = {
'speaker': turn['speaker'],
'text': self._clean_text(turn['text'])
}
cleaned_turns.append(cleaned_turn)
if cleaned_turns:
return {
'dialogue_id': dialogue['dialogue_id'],
'turns': cleaned_turns
}
return None
except Exception as e:
print(f"Error processing dialogue {dialogue.get('dialogue_id', 'unknown')}: {str(e)}")
return None
def _validate_turn(self, turn: Dict) -> bool:
"""
Validate a single speaking turn.
"""
return (
turn['speaker'] in self.config.allowed_speakers and
self.config.min_length <= len(turn['text']) <= self.config.max_length
)
def _clean_text(self, text: str) -> str:
"""
Clean and normalize text.
"""
# Remove excessive whitespace
text = re.sub(r'\s+', ' ', text.strip())
# Normalize quotes and apostrophes
text = re.sub(r'[βΒ΄`]', "'", text)
text = re.sub(r'[ββ]', '"', text)
# Remove control characters
text = "".join(char for char in text if ord(char) >= 32 or char == '\n')
return text
def _process_validation(self, items: List, func, description: str) -> List:
"""
Process items sequentially with a progress bar.
"""
results = []
print(f"Starting {description}")
for item in tqdm(items, desc=description):
try:
result = func(item)
if result is not None:
results.append(result)
except Exception as e:
print(f"Error processing item: {str(e)}")
print(f"Completed {description}. Processed {len(results)} items successfully")
return results
def _get_cache_path(self, data: List[Dict]) -> Path:
"""
Generate cache file path based on data hash.
"""
data_str = json.dumps(data, sort_keys=True)
hash_value = hashlib.md5(data_str.encode()).hexdigest()
return self.cache_dir / f"cache_{hash_value}.pkl"
|