File size: 4,375 Bytes
5b413d1
 
 
 
 
fc5f33b
5b413d1
 
7a0020b
5b413d1
cc2577d
d7fc7a7
5b413d1
 
 
cc2577d
4aec49f
7a0020b
 
 
cc2577d
7a0020b
 
 
5b413d1
7a0020b
5b413d1
 
7a0020b
cc2577d
7a0020b
 
 
 
 
 
 
 
 
 
cc2577d
 
5b413d1
7a0020b
 
5b413d1
7a0020b
5b413d1
cc2577d
7a0020b
5b413d1
 
 
cc2577d
 
5b413d1
 
 
d7fc7a7
 
 
 
cc2577d
7a0020b
5b413d1
cc2577d
d7fc7a7
cc2577d
7a0020b
5b413d1
 
cc2577d
5b413d1
7a0020b
5b413d1
cc2577d
7a0020b
5b413d1
 
 
cc2577d
5b413d1
 
 
 
 
 
 
cc2577d
7a0020b
a763857
 
 
 
 
 
cc2577d
7a0020b
cc2577d
a763857
5b413d1
7a0020b
d7fc7a7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import os
import json
from chatbot_model import ChatbotConfig, RetrievalChatbot
from response_quality_checker import ResponseQualityChecker
from chatbot_validator import ChatbotValidator
from plotter import Plotter
from environment_setup import EnvironmentSetup
from logger_config import config_logger

logger = config_logger(__name__)
            
def run_chatbot_validation():
    # Initialize environment
    env = EnvironmentSetup()
    env.initialize()
    
    MODEL_DIR = "models"
    FAISS_INDICES_DIR = os.path.join(MODEL_DIR, "faiss_indices")
    FAISS_INDEX_PRODUCTION_PATH = os.path.join(FAISS_INDICES_DIR, "faiss_index_production.index")
    FAISS_INDEX_TEST_PATH = os.path.join(FAISS_INDICES_DIR, "faiss_index_test.index")
    
    # Toggle 'production' or 'test' env
    ENVIRONMENT = "production"
    if ENVIRONMENT == "test":
        FAISS_INDEX_PATH = FAISS_INDEX_TEST_PATH
        RESPONSE_POOL_PATH = FAISS_INDEX_TEST_PATH.replace(".index", "_responses.json")
    else:
        FAISS_INDEX_PATH = FAISS_INDEX_PRODUCTION_PATH
        RESPONSE_POOL_PATH = FAISS_INDEX_PRODUCTION_PATH.replace(".index", "_responses.json")
    
    # Load the config
    config_path = os.path.join(MODEL_DIR, "config.json")
    if os.path.exists(config_path):
        with open(config_path, "r", encoding="utf-8") as f:
            config_dict = json.load(f)
        config = ChatbotConfig.from_dict(config_dict)
        logger.info(f"Loaded ChatbotConfig from {config_path}")
    else:
        config = ChatbotConfig()
        logger.warning("No config.json found. Using default ChatbotConfig.")
        
    # Load RetrievalChatbot in 'inference' mode
    try:
        chatbot = RetrievalChatbot.load_model(load_dir=MODEL_DIR, mode="inference")
        logger.info("RetrievalChatbot loaded in 'inference' mode successfully.")
    except Exception as e:
        logger.error(f"Failed to load RetrievalChatbot: {e}")
        return
    
    # Confirm FAISS index & response pool exist
    if not os.path.exists(FAISS_INDEX_PATH) or not os.path.exists(RESPONSE_POOL_PATH):
        logger.error("FAISS index or response pool file is missing.")
        return
    
    # Load FAISS index and response pool
    try:
        chatbot.data_pipeline.load_faiss_index(FAISS_INDEX_PATH)
        logger.info(f"FAISS index loaded from {FAISS_INDEX_PATH}.")
        logger.info(f"FAISS dimensions: {chatbot.data_pipeline.index.d}")
        logger.info(f"FAISS index type: {type(chatbot.data_pipeline.index)}")
        logger.info(f"FAISS index total vectors: {chatbot.data_pipeline.index.ntotal}")
        logger.info(f"FAISS is_trained: {chatbot.data_pipeline.index.is_trained}")
        
        with open(RESPONSE_POOL_PATH, "r", encoding="utf-8") as f:
            chatbot.data_pipeline.response_pool = json.load(f)
            logger.info(f"Response pool loaded from {RESPONSE_POOL_PATH}.")
            logger.info(f"\nTotal responses in pool: {len(chatbot.data_pipeline.response_pool)}")
            
        # Validate dimension consistency
        chatbot.data_pipeline.validate_faiss_index()
        logger.info("FAISS index and response pool validated successfully.")
        
    except Exception as e:
        logger.error(f"Failed to load or validate FAISS index: {e}")
        return
    
    # Init QualityChecker and Validator
    quality_checker = ResponseQualityChecker(data_pipeline=chatbot.data_pipeline)
    validator = ChatbotValidator(chatbot=chatbot, quality_checker=quality_checker)
    logger.info("ResponseQualityChecker and ChatbotValidator initialized.")
    
    # Run validation
    try:
        validation_metrics = validator.run_validation(num_examples=5)
        logger.info(f"Validation Metrics: {validation_metrics}")
    except Exception as e:
        logger.error(f"Validation process failed: {e}")
        return
    
    # Plot metrics
    try:
        plotter = Plotter(save_dir=env.training_dirs["plots"])
        plotter.plot_validation_metrics(validation_metrics)
        logger.info("Validation metrics plotted successfully.")
    except Exception as e:
        logger.error(f"Failed to plot validation metrics: {e}")
    
    # Run interactive chat loop
    logger.info("\nStarting interactive chat session...")
    chatbot.run_interactive_chat(quality_checker, show_alternatives=True)

if __name__ == "__main__":
    run_chatbot_validation()