File size: 32,604 Bytes
74af405
 
 
 
 
 
9b5daff
74af405
 
 
 
 
 
5b413d1
74af405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b413d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74af405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b5daff
74af405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b413d1
74af405
9b5daff
74af405
 
 
 
 
 
 
 
9b5daff
 
74af405
 
 
 
 
 
 
 
 
9b5daff
74af405
9b5daff
 
74af405
9b5daff
 
 
 
 
 
 
 
 
 
74af405
 
 
9b5daff
74af405
9b5daff
 
 
 
 
 
 
 
 
 
 
 
74af405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b413d1
74af405
5b413d1
 
 
 
 
 
74af405
5b413d1
74af405
5b413d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74af405
 
5b413d1
74af405
5b413d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74af405
5b413d1
 
 
74af405
5b413d1
 
 
74af405
5b413d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b5daff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74af405
 
 
9b5daff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74af405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
import os
import gc
import numpy as np
import faiss
import tensorflow as tf
import h5py
import math
from tqdm import tqdm
import json
from pathlib import Path
from typing import Union, Optional, List, Tuple, Generator
from transformers import AutoTokenizer
from typing import List, Tuple, Generator
from transformers import AutoTokenizer
from gpu_monitor import GPUMemoryMonitor

from logger_config import config_logger
logger = config_logger(__name__)

class TFDataPipeline:
    def __init__(
        self,
        config,
        tokenizer,
        encoder,
        index_file_path: str,
        response_pool: List[str],
        max_length: int,
        query_embeddings_cache: dict,
        neg_samples: int = 3,
        index_type: str = 'IndexFlatIP',
        nlist: int = 100,
        max_retries: int = 3
    ):
        self.config = config
        self.tokenizer = tokenizer
        self.encoder = encoder
        self.index_file_path = index_file_path
        self.response_pool = response_pool
        self.max_length = max_length
        self.neg_samples = neg_samples
        self.query_embeddings_cache = query_embeddings_cache # In-memory cache for embeddings
        self.index_type = index_type
        self.nlist = nlist
        self.embedding_batch_size = 16 if len(response_pool) < 100 else 64
        self.search_batch_size = 16 if len(response_pool) < 100 else 64
        self.max_batch_size = 16 if len(response_pool) < 100 else 64
        self.memory_monitor = GPUMemoryMonitor()
        self.max_retries = max_retries

        if os.path.exists(index_file_path):
            logger.info(f"Loading existing FAISS index from {index_file_path}...")
            self.index = faiss.read_index(index_file_path)
            self.validate_faiss_index()
            logger.info("FAISS index loaded and validated successfully.")
        else:
            # Initialize FAISS index
            dimension = self.encoder.config.embedding_dim
            self.index = faiss.IndexFlatIP(dimension)
            logger.info(f"Initialized FAISS IndexFlatIP with dimension {dimension}.")
            
        if not self.index.is_trained:
            # Train the index if it's not trained. # TODO: Replace 'dimension' with embedding size
            dimension = self.query_embeddings_cache[next(iter(self.query_embeddings_cache))].shape[0]
            self.index.train(np.array(list(self.query_embeddings_cache.values())).astype(np.float32))
            self.index.add(np.array(list(self.query_embeddings_cache.values())).astype(np.float32))
        
    def save_embeddings_cache_hdf5(self, cache_file_path: str):
        """Save the embeddings cache to an HDF5 file."""
        with h5py.File(cache_file_path, 'w') as hf:
            for query, emb in self.query_embeddings_cache.items():
                hf.create_dataset(query, data=emb)
        logger.info(f"Embeddings cache saved to {cache_file_path}.")

    def load_embeddings_cache_hdf5(self, cache_file_path: str):
        """Load the embeddings cache from an HDF5 file."""
        with h5py.File(cache_file_path, 'r') as hf:
            for query in hf.keys():
                self.query_embeddings_cache[query] = hf[query][:]
        logger.info(f"Embeddings cache loaded from {cache_file_path}.")
        
    def save_faiss_index(self, index_file_path: str):
        faiss.write_index(self.index, index_file_path)
        logger.info(f"FAISS index saved to {index_file_path}")
    
    def load_faiss_index(self, index_file_path: str):
        """Load the FAISS index from the specified file path."""
        if os.path.exists(index_file_path):
            self.index = faiss.read_index(index_file_path)
            logger.info(f"FAISS index loaded from {index_file_path}.")
        else:
            logger.error(f"FAISS index file not found at {index_file_path}.")
            raise FileNotFoundError(f"FAISS index file not found at {index_file_path}.")
    
    def validate_faiss_index(self):
        """Validates that the FAISS index has the correct dimensionality."""
        expected_dim = self.encoder.config.embedding_dim
        if self.index.d != expected_dim:
            logger.error(f"FAISS index dimension {self.index.d} does not match encoder embedding dimension {expected_dim}.")
            raise ValueError("FAISS index dimensionality mismatch.")
        logger.info("FAISS index dimension validated successfully.")
    
    def save_tokenizer(self, tokenizer_dir: str):
        self.tokenizer.save_pretrained(tokenizer_dir)
        logger.info(f"Tokenizer saved to {tokenizer_dir}")
    
    def load_tokenizer(self, tokenizer_dir: str):
        self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_dir)
        logger.info(f"Tokenizer loaded from {tokenizer_dir}")
    
    @staticmethod
    def load_json_training_data(data_path: Union[str, Path], debug_samples: Optional[int] = None) -> List[dict]:
        """
        Load training data from a JSON file.
        
        Args:
            data_path (Union[str, Path]): Path to the JSON file containing dialogues.
            debug_samples (Optional[int]): Number of samples to load for debugging.
        
        Returns:
            List[dict]: List of dialogue dictionaries.
        """
        logger.info(f"Loading training data from {data_path}...")
        data_path = Path(data_path)
        if not data_path.exists():
            logger.error(f"Data file {data_path} does not exist.")
            return []
        
        with open(data_path, 'r', encoding='utf-8') as f:
            dialogues = json.load(f)
        
        if debug_samples is not None:
            dialogues = dialogues[:debug_samples]
            logger.info(f"Debug mode: Limited to {debug_samples} dialogues")
        
        logger.info(f"Loaded {len(dialogues)} dialogues.")
        return dialogues
    
    def collect_responses(self, dialogues: List[dict]) -> List[str]:
        """Extract unique assistant responses from dialogues."""
        response_set = set()
        for dialogue in tqdm(dialogues, desc="Processing Dialogues", unit="dialogue"):
            turns = dialogue.get('turns', [])
            for turn in turns:
                speaker = turn.get('speaker')
                text = turn.get('text', '').strip()
                if speaker == 'assistant' and text:
                    # Ensure we don't exclude valid shorter responses
                    if len(text) <= self.max_length:
                        response_set.add(text)
        logger.info(f"Collected {len(response_set)} unique assistant responses from dialogues.")
        return list(response_set)
    
    def _extract_pairs_from_dialogue(self, dialogue: dict) -> List[Tuple[str, str]]:
        """Extract query-response pairs from a dialogue."""
        pairs = []
        turns = dialogue.get('turns', [])
        
        for i in range(len(turns) - 1):
            current_turn = turns[i]
            next_turn = turns[i+1]
            
            if (current_turn.get('speaker') == 'user' and
                next_turn.get('speaker') == 'assistant' and
                'text' in current_turn and 
                'text' in next_turn):
                
                query = current_turn['text'].strip()
                positive = next_turn['text'].strip()
                pairs.append((query, positive))
                
        return pairs
    
    def compute_and_index_response_embeddings(self):
        """
        Computes embeddings for the response pool and adds them to the FAISS index with progress bars.
        """
        logger.info("Computing embeddings for the response pool...")

        # Ensure all responses are strings
        if not all(isinstance(response, str) for response in self.response_pool):
            logger.error("All elements in response_pool must be strings.")
            raise ValueError("Invalid data type in response_pool.")

        # Tokenization
        logger.info("Tokenizing responses...")
        encoded_responses = self.tokenizer(
            self.response_pool,
            padding=True,
            truncation=True,
            max_length=self.max_length,
            return_tensors='tf'
        )
        response_ids = encoded_responses['input_ids']

        # Compute embeddings in batches with progress bar
        batch_size = getattr(self, 'embedding_batch_size', 64)  # Default to 64 if not set
        total_responses = len(response_ids)
        logger.info(f"Computing embeddings in batches of {batch_size}...")
        embeddings = []

        with tqdm(total=total_responses, desc="Computing Embeddings", unit="response") as pbar:
            for i in range(0, total_responses, batch_size):
                batch_ids = response_ids[i:i + batch_size]
                # Compute embeddings
                batch_embeddings = self.encoder(batch_ids, training=False).numpy()
                # Normalize embeddings for cosine similarity
                faiss.normalize_L2(batch_embeddings)
                embeddings.append(batch_embeddings)
                pbar.update(len(batch_ids))

        if embeddings:
            embeddings = np.vstack(embeddings).astype(np.float32)
            # Add embeddings to FAISS index with progress bar
            logger.info(f"Adding {len(embeddings)} response embeddings to FAISS index...")
            
            # Determine number of batches for indexing
            index_batch_size = getattr(self, 'index_batch_size', 1000)  # Adjust as needed
            total_embeddings = len(embeddings)
            num_index_batches = math.ceil(total_embeddings / index_batch_size)
            
            with tqdm(total=total_embeddings, desc="Indexing Embeddings", unit="embedding") as pbar_index:
                for i in range(0, total_embeddings, index_batch_size):
                    batch = embeddings[i:i + index_batch_size]
                    self.index.add(batch)
                    pbar_index.update(len(batch))
            
            logger.info("Response embeddings added to FAISS index.")
        else:
            logger.warning("No embeddings to add to FAISS index.")

        # **Sanity Check:** Verify the number of embeddings in FAISS index
        logger.info(f"Total embeddings in FAISS index after addition: {self.index.ntotal}")
    
    def _find_hard_negatives_batch(self, queries: List[str], positives: List[str]) -> List[List[str]]:
        """Find hard negatives for a batch of queries with error handling and retries."""
        retry_count = 0
        total_responses = len(self.response_pool)

        # Set k to be neg_samples + additional candidates to improve negative selection
        k = self.neg_samples + 0

        while retry_count < self.max_retries:
            try:
                # Compute embeddings in sub-batches to manage memory
                batch_size = 128  # Example sub-batch size; adjust as needed
                query_embeddings = []
                for i in range(0, len(queries), batch_size):
                    sub_queries = queries[i:i + batch_size]
                    sub_embeddings = np.vstack([
                        self.query_embeddings_cache[q] for q in sub_queries
                    ]).astype(np.float32)
                    faiss.normalize_L2(sub_embeddings)
                    query_embeddings.append(sub_embeddings)
                query_embeddings = np.vstack(query_embeddings)

                # Ensure contiguous memory layout
                query_embeddings = np.ascontiguousarray(query_embeddings)

                # Perform FAISS search on CPU
                distances, indices = self.index.search(query_embeddings, k)

                all_negatives = []
                for query_indices, query, positive in zip(indices, queries, positives):
                    negatives = []
                    positive_strip = positive.strip()
                    seen = {positive_strip}

                    for idx in query_indices:
                        if idx >= 0 and idx < total_responses:
                            candidate = self.response_pool[idx].strip()
                            if candidate and candidate not in seen:
                                seen.add(candidate)
                                negatives.append(candidate)
                                if len(negatives) >= self.neg_samples:
                                    break

                    # If not enough negatives are found, pad with a special token
                    while len(negatives) < self.neg_samples:
                        negatives.append("<EMPTY_NEGATIVE>")  # Use a special token

                    all_negatives.append(negatives)

                return all_negatives

            except KeyError as ke:
                retry_count += 1
                logger.warning(f"Hard negative search attempt {retry_count} failed due to missing embeddings: {ke}")
                if retry_count == self.max_retries:
                    logger.error("Max retries reached for hard negative search due to missing embeddings.")
                    return [["<EMPTY_NEGATIVE>"] * self.neg_samples for _ in queries]
                # Perform memory cleanup
                gc.collect()
                if tf.config.list_physical_devices('GPU'):
                    tf.keras.backend.clear_session()
            except Exception as e:
                retry_count += 1
                logger.warning(f"Hard negative search attempt {retry_count} failed: {e}")
                if retry_count == self.max_retries:
                    logger.error("Max retries reached for hard negative search.")
                    return [["<EMPTY_NEGATIVE>"] * self.neg_samples for _ in queries]
                # Perform memory cleanup
                gc.collect()
                if tf.config.list_physical_devices('GPU'):
                    tf.keras.backend.clear_session()

    def encode_query(self, query: str, context: Optional[List[Tuple[str, str]]] = None) -> np.ndarray:
        """
        Encode a query with optional conversation context into an embedding vector.

        Args:
            query (str): The user query.
            context (Optional[List[Tuple[str, str]]]): Optional conversation history as a list of (user, assistant) tuples.

        Returns:
            np.ndarray: The normalized embedding vector for the query.
        """
        # Prepare query with context
        if context:
            context_str = ' '.join([
                f"{self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<USER>')]} {q} "
                f"{self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<ASSISTANT>')]} {r}"
                for q, r in context[-self.config.max_context_turns:]
            ])
            query = f"{context_str} {self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<USER>')]}" \
                    f" {query}"
        else:
            query = f"{self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<USER>')]} {query}"
        
        # Tokenize and encode
        encodings = self.tokenizer(
            [query],
            padding='max_length',
            truncation=True,
            max_length=self.max_length,
            return_tensors='np'  # Use NumPy arrays for compatibility with FAISS
        )
        input_ids = encodings['input_ids']
        
        # Verify token IDs
        max_id = np.max(input_ids)
        new_vocab_size = len(self.tokenizer)
        
        if max_id >= new_vocab_size:
            logger.error(f"Token ID {max_id} exceeds the vocabulary size {new_vocab_size}.")
            raise ValueError("Token ID exceeds vocabulary size.")
        
        # Get embeddings from the shared encoder
        embeddings = self.encoder(input_ids, training=False).numpy()
        
        # Normalize embeddings for cosine similarity
        faiss.normalize_L2(embeddings)
        
        return embeddings[0]  # Return as a 1D array

    def encode_responses(self, responses: List[str], context: Optional[List[Tuple[str, str]]] = None) -> np.ndarray:
        """
        Encode a list of responses into embedding vectors.

        Args:
            responses (List[str]): List of response texts.
            context (Optional[List[Tuple[str, str]]]): Optional conversation history as a list of (user, assistant) tuples.

        Returns:
            np.ndarray: Array of normalized embedding vectors.
        """
        # Prepare responses with context if provided
        if context:
            prepared_responses = []
            for response in responses:
                context_str = ' '.join([
                    f"{self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<USER>')]} {q} "
                    f"{self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<ASSISTANT>')]} {r}"
                    for q, r in context[-self.config.max_context_turns:]
                ])
                full_response = f"{context_str} {self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<ASSISTANT>')]} {response}"
                prepared_responses.append(full_response)
        else:
            prepared_responses = [
                f"{self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<ASSISTANT>')]} {resp}"
                for resp in responses
            ]
        
        # Tokenize and encode
        encodings = self.tokenizer(
            prepared_responses,
            padding='max_length',
            truncation=True,
            max_length=self.max_length,
            return_tensors='np'  # Use NumPy arrays for compatibility with FAISS
        )
        input_ids = encodings['input_ids']
        
        # Verify token IDs
        max_id = np.max(input_ids)
        new_vocab_size = len(self.tokenizer)
        
        if max_id >= new_vocab_size:
            logger.error(f"Token ID {max_id} exceeds the vocabulary size {new_vocab_size}.")
            raise ValueError("Token ID exceeds vocabulary size.")
        
        # Get embeddings from the shared encoder
        embeddings = self.encoder(input_ids, training=False).numpy()
        
        # Normalize embeddings for cosine similarity
        faiss.normalize_L2(embeddings)
        
        return embeddings.astype('float32')
    
    def prepare_and_save_data(self, dialogues: List[dict], tf_record_path: str, batch_size: int = 32):
        """
        Processes dialogues in batches and saves to a TFRecord file using optimized batch tokenization and encoding.
        
        Args:
            dialogues (List[dict]): List of dialogue dictionaries.
            tf_record_path (str): Path to save the TFRecord file.
            batch_size (int): Number of dialogues to process per batch.
        """
        logger.info(f"Preparing and saving data to {tf_record_path}...")
        
        num_dialogues = len(dialogues)
        num_batches = math.ceil(num_dialogues / batch_size)
        
        with tf.io.TFRecordWriter(tf_record_path) as writer:
            # Initialize progress bar
            with tqdm(total=num_batches, desc="Preparing Data Batches", unit="batch") as pbar:
                for i in range(num_batches):
                    start_idx = i * batch_size
                    end_idx = min(start_idx + batch_size, num_dialogues)
                    batch_dialogues = dialogues[start_idx:end_idx]
                    
                    # Extract all query-positive pairs in the batch
                    queries = []
                    positives = []
                    for dialogue in batch_dialogues:
                        pairs = self._extract_pairs_from_dialogue(dialogue)
                        for query, positive in pairs:
                            if len(query) <= self.max_length and len(positive) <= self.max_length:
                                queries.append(query)
                                positives.append(positive)
                    
                    if not queries:
                        pbar.update(1)
                        continue  # Skip if no valid queries
                    
                    # Compute and cache query embeddings
                    try:
                        self._compute_embeddings(queries)
                    except Exception as e:
                        logger.error(f"Error computing embeddings: {e}")
                        pbar.update(1)
                        continue  # Skip to the next batch
                    
                    # Find hard negatives for the batch
                    try:
                        hard_negatives = self._find_hard_negatives_batch(queries, positives)
                    except Exception as e:
                        logger.error(f"Error finding hard negatives: {e}")
                        pbar.update(1)
                        continue  # Skip to the next batch
                    
                    # Tokenize and encode all queries, positives, and negatives in the batch
                    try:
                        encoded_queries = self.tokenizer.batch_encode_plus(
                            queries,
                            max_length=self.config.max_context_token_limit,
                            truncation=True,
                            padding='max_length',
                            return_tensors='tf'
                        )
                        encoded_positives = self.tokenizer.batch_encode_plus(
                            positives,
                            max_length=self.config.max_context_token_limit,
                            truncation=True,
                            padding='max_length',
                            return_tensors='tf'
                        )
                    except Exception as e:
                        logger.error(f"Error during tokenization: {e}")
                        pbar.update(1)
                        continue  # Skip to the next batch
                    
                    # Flatten hard_negatives while maintaining alignment
                    # Assuming hard_negatives is a list of lists, where each sublist corresponds to a query
                    try:
                        flattened_negatives = [neg for sublist in hard_negatives for neg in sublist]
                        encoded_negatives = self.tokenizer.batch_encode_plus(
                            flattened_negatives,
                            max_length=self.config.max_context_token_limit,
                            truncation=True,
                            padding='max_length',
                            return_tensors='tf'
                        )
                        
                        # Reshape encoded_negatives['input_ids'] to [num_queries, num_negatives, max_length]
                        num_negatives = self.config.neg_samples
                        reshaped_negatives = encoded_negatives['input_ids'].numpy().reshape(-1, num_negatives, self.config.max_context_token_limit)
                    except Exception as e:
                        logger.error(f"Error during negatives tokenization: {e}")
                        pbar.update(1)
                        continue  # Skip to the next batch
                    
                    # Serialize each example and write to TFRecord
                    for j in range(len(queries)):
                        try:
                            q_id = encoded_queries['input_ids'][j].numpy()
                            p_id = encoded_positives['input_ids'][j].numpy()
                            n_id = reshaped_negatives[j]
                            
                            feature = {
                                'query_ids': tf.train.Feature(int64_list=tf.train.Int64List(value=q_id)),
                                'positive_ids': tf.train.Feature(int64_list=tf.train.Int64List(value=p_id)),
                                'negative_ids': tf.train.Feature(int64_list=tf.train.Int64List(value=n_id.flatten())),
                            }
                            example = tf.train.Example(features=tf.train.Features(feature=feature))
                            writer.write(example.SerializeToString())
                        except Exception as e:
                            logger.error(f"Error serializing example {j} in batch {i}: {e}")
                            continue  # Skip to the next example
                    
                    # Update progress bar
                    pbar.update(1)
        
        logger.info(f"Data preparation complete. TFRecord saved.")
        
    def _compute_embeddings(self, queries: List[str]) -> None:
        new_queries = [q for q in queries if q not in self.query_embeddings_cache]
        if not new_queries:
            return  # All queries already cached

        # Compute embeddings for new queries
        new_embeddings = []
        for i in range(0, len(new_queries), self.embedding_batch_size):
            batch_queries = new_queries[i:i + self.embedding_batch_size]
            encoded = self.tokenizer(
                batch_queries,
                padding=True,
                truncation=True,
                max_length=self.max_length,
                return_tensors='tf'
            )
            batch_embeddings = self.encoder(encoded['input_ids'], training=False).numpy()
            faiss.normalize_L2(batch_embeddings)
            new_embeddings.extend(batch_embeddings)

        # Update the cache
        for query, emb in zip(new_queries, new_embeddings):
            self.query_embeddings_cache[query] = emb

    def data_generator(self, dialogues: List[dict]) -> Generator[Tuple[str, str, List[str]], None, None]:
        """
        Generates training examples: (query, positive, hard_negatives).
        Wrapped the outer loop with tqdm for progress tracking.
        """
        total_dialogues = len(dialogues)
        logger.debug(f"Total dialogues to process: {total_dialogues}")

        # Initialize tqdm progress bar
        with tqdm(total=total_dialogues, desc="Processing Dialogues", unit="dialogue") as pbar:
            for dialogue in dialogues:
                pairs = self._extract_pairs_from_dialogue(dialogue)
                for query, positive in pairs:
                    # Ensure embeddings are computed, find hard negatives, etc.
                    self._compute_embeddings([query])
                    hard_negatives = self._find_hard_negatives_batch([query], [positive])[0]
                    yield (query, positive, hard_negatives)
                pbar.update(1)

    def get_tf_dataset(self, dialogues: List[dict], batch_size: int) -> tf.data.Dataset:
        """
        Creates a tf.data.Dataset for streaming training that yields
        (input_ids_query, input_ids_positive, input_ids_negatives).
        """
        # 1) Start with a generator dataset
        dataset = tf.data.Dataset.from_generator(
            lambda: self.data_generator(dialogues),
            output_signature=(
                tf.TensorSpec(shape=(), dtype=tf.string),        # Query (single string)
                tf.TensorSpec(shape=(), dtype=tf.string),        # Positive (single string)
                tf.TensorSpec(shape=(self.neg_samples,), dtype=tf.string)    # Hard Negatives (list of strings)
            )
        )
        
        # 2) Batch the raw strings
        dataset = dataset.batch(batch_size, drop_remainder=True)

        # 3) Map them through a tokenize step using `tf.py_function`
        dataset = dataset.map(
            lambda q, p, n: self._tokenize_triple(q, p, n),
            num_parallel_calls=1 #tf.data.AUTOTUNE
        )

        dataset = dataset.prefetch(tf.data.AUTOTUNE)
        return dataset
    
    def _tokenize_triple(
        self, 
        q: tf.Tensor, 
        p: tf.Tensor, 
        n: tf.Tensor
    ) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]:
        """
        Wraps a Python function via tf.py_function to convert tf.Tensors of strings 
        -> Python lists of strings -> HF tokenizer -> Tensors of IDs.
        
        q is shape [batch_size], p is shape [batch_size], 
        n is shape [batch_size, neg_samples] (i.e., each row is a list of negatives).
        """
        # Use tf.py_function with limited parallelism
        q_ids, p_ids, n_ids = tf.py_function(
            func=self._tokenize_triple_py,
            inp=[q, p, n, tf.constant(self.max_length), tf.constant(self.neg_samples)],
            Tout=[tf.int32, tf.int32, tf.int32]
        )

        # Manually set shape information
        q_ids.set_shape([None, self.max_length])                # [batch_size, max_length]
        p_ids.set_shape([None, self.max_length])                # [batch_size, max_length]
        n_ids.set_shape([None, self.neg_samples, self.max_length])  # [batch_size, neg_samples, max_length]

        return q_ids, p_ids, n_ids

    def _tokenize_triple_py(
        self, 
        q: tf.Tensor, 
        p: tf.Tensor, 
        n: tf.Tensor,
        max_len: tf.Tensor,
        neg_samples: tf.Tensor
    ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
        """
        Python function that:
        - Decodes each tf.string Tensor to a Python list of strings
        - Calls the HF tokenizer
        - Reshapes negatives
        - Returns np.array of int32s for (q_ids, p_ids, n_ids).
        
        q: shape [batch_size], p: shape [batch_size]
        n: shape [batch_size, neg_samples]
        max_len: scalar int
        neg_samples: scalar int
        """
        max_len = int(max_len.numpy())       # Convert to Python int
        neg_samples = int(neg_samples.numpy())

        # 1) Convert Tensors -> Python lists of strings
        q_list = [q_i.decode("utf-8") for q_i in q.numpy()]  # shape [batch_size]
        p_list = [p_i.decode("utf-8") for p_i in p.numpy()]  # shape [batch_size]

        # shape [batch_size, neg_samples], decode each row
        n_list = []
        for row in n.numpy():
            # row is shape [neg_samples], each is a tf.string
            decoded = [neg.decode("utf-8") for neg in row]
            n_list.append(decoded)

        # 2) Tokenize queries & positives
        q_enc = self.tokenizer(
            q_list,
            padding="max_length",
            truncation=True,
            max_length=max_len,
            return_tensors="np"
        )
        p_enc = self.tokenizer(
            p_list,
            padding="max_length",
            truncation=True,
            max_length=max_len,
            return_tensors="np"
        )

        # 3) Tokenize negatives
        # Flatten [batch_size, neg_samples] -> single list
        flattened_negatives = [neg for row in n_list for neg in row]
        if len(flattened_negatives) == 0:
            # No negatives at all: return a zero array
            n_ids = np.zeros((len(q_list), neg_samples, max_len), dtype=np.int32)
        else:
            n_enc = self.tokenizer(
                flattened_negatives,
                padding="max_length",
                truncation=True,
                max_length=max_len,
                return_tensors="np"
            )
            # shape [batch_size * neg_samples, max_len]
            n_input_ids = n_enc["input_ids"]

            # We want to reshape to [batch_size, neg_samples, max_len]
            # Handle cases where there might be fewer negatives
            batch_size = len(q_list)
            n_ids_list = []
            for i in range(batch_size):
                start_idx = i * neg_samples
                end_idx = start_idx + neg_samples
                row_negs = n_input_ids[start_idx:end_idx]

                # If fewer negatives, pad with zeros
                if row_negs.shape[0] < neg_samples:
                    deficit = neg_samples - row_negs.shape[0]
                    pad_arr = np.zeros((deficit, max_len), dtype=np.int32)
                    row_negs = np.concatenate([row_negs, pad_arr], axis=0)

                n_ids_list.append(row_negs)

            # stack them -> shape [batch_size, neg_samples, max_len]
            n_ids = np.stack(n_ids_list, axis=0)

        # 4) Return as np.int32 arrays
        q_ids = q_enc["input_ids"].astype(np.int32)  # shape [batch_size, max_len]
        p_ids = p_enc["input_ids"].astype(np.int32)  # shape [batch_size, max_len]
        n_ids = n_ids.astype(np.int32)               # shape [batch_size, neg_samples, max_len]

        return q_ids, p_ids, n_ids