File size: 6,129 Bytes
3190e1e
 
 
300fe5d
3190e1e
 
 
 
 
 
 
300fe5d
3190e1e
300fe5d
 
 
 
3190e1e
300fe5d
 
 
 
 
 
 
 
3190e1e
f7b283c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3190e1e
 
 
 
 
 
 
 
300fe5d
3190e1e
300fe5d
 
 
3190e1e
 
f7b283c
300fe5d
 
 
3190e1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
300fe5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3190e1e
f7b283c
 
3190e1e
 
f7b283c
300fe5d
 
3190e1e
 
 
 
 
 
 
 
 
f7b283c
3190e1e
 
 
 
 
f7b283c
 
 
 
 
 
 
 
 
 
 
3190e1e
 
 
f7b283c
3190e1e
 
 
 
f7b283c
3190e1e
 
 
 
 
300fe5d
f7b283c
3190e1e
300fe5d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
from setuptools import setup, find_packages
import subprocess
import sys
import platform

with open("README.md", "r", encoding="utf-8") as fh:
    long_description = fh.read()

with open("requirements.txt", "r", encoding="utf-8") as fh:
    requirements = [line.strip() for line in fh if line.strip() and not line.startswith("#")]

def setup_spacy_models(models=['en_core_web_sm', 'en_core_web_md']):
    """
    Download the specified spaCy model.

    Args:
        models(List): List[str] of the names of the spaCy model to download.
    """
    try:
        for model in models:
            print(f"Downloading spaCy model: {model}")
            subprocess.check_call([sys.executable, "-m", "spacy", "download", model])
            print(f"Successfully downloaded spaCy model: {model}")
    except subprocess.CalledProcessError as e:
        print(f"Error downloading spaCy model: {model}")
        print(e)

def setup_gpu_dependencies():
    """Setup GPU-specific dependencies."""
    cuda_available = False
    
    # Check CUDA availability
    try:
        import torch
        cuda_available = torch.cuda.is_available()
    except ImportError:
        pass
    
    if cuda_available:
        try:
            subprocess.check_call([sys.executable, "-m", "pip", "install", "faiss-gpu>=1.7.0"])
            print("Successfully installed faiss-gpu")
        except subprocess.CalledProcessError:
            print("Failed to install faiss-gpu. Falling back to faiss-cpu")
            subprocess.check_call([sys.executable, "-m", "pip", "install", "faiss-cpu>=1.7.0"])
    else:
        subprocess.check_call([sys.executable, "-m", "pip", "install", "faiss-cpu>=1.7.0"])
        
def setup_models():
    """
    Download other required models.
    """
    import tensorflow_hub as hub
    from sklearn.feature_extraction.text import TfidfVectorizer
    from transformers import (
        AutoTokenizer, 
        AutoModel,
        GPT2TokenizerFast, 
        MarianTokenizer,
        DistilBertTokenizer,
        DistilBertModel
    )
    
    # Cache the models
    tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
    model = DistilBertModel.from_pretrained('distilbert-base-uncased')
    
    # Download Universal Sentence Encoder
    _ = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
    
    # Download paraphraser model
    _ = AutoTokenizer.from_pretrained('humarin/chatgpt_paraphraser_on_T5_base')
    
    # Download translation models
    source_lang, pivot_lang, target_lang = 'en', 'de', 'es'
    model_names = [
        f'Helsinki-NLP/opus-mt-{source_lang}-{pivot_lang}',
        f'Helsinki-NLP/opus-mt-{pivot_lang}-{target_lang}',
        f'Helsinki-NLP/opus-mt-{target_lang}-{source_lang}'
    ]
    for model_name in model_names:
        _ = MarianTokenizer.from_pretrained(model_name)
    
    # Download GPT-2
    _ = GPT2TokenizerFast.from_pretrained('gpt2')

def setup_nltk():
    """
    Download required NLTK data.
    """
    import nltk
    required_packages = [
        'wordnet',
        'averaged_perceptron_tagger_eng'
    ]
    
    for package in required_packages:
        try:
            print(f"Downloading {package}...")
            nltk.download(package)
            print(f"Successfully downloaded {package}")
        except Exception as e:
            print(f"Warning: Could not download {package}: {str(e)}")

def setup_faiss():
    """
    Download required faiss library.
    """
    current_os = platform.system()
    cuda_available = False

    # Function to check CUDA availability
    def check_cuda():
        try:
            import torch
            return torch.cuda.is_available()
        except:
            return False

    if current_os == "Linux" and check_cuda():
        # Attempt to install faiss-gpu
        try:
            print("Attempting to install faiss-gpu...")
            subprocess.check_call([sys.executable, "-m", "pip", "install", "faiss-gpu>=1.7.0"])
            print("Successfully installed faiss-gpu")
            return
        except subprocess.CalledProcessError:
            print("Failed to install faiss-gpu. Falling back to faiss-cpu.")
    
    # Install faiss-cpu as the default
    try:
        print("Installing faiss-cpu...")
        subprocess.check_call([sys.executable, "-m", "pip", "install", "faiss-cpu>=1.7.0"])
        print("Successfully installed faiss-cpu")
    except subprocess.CalledProcessError as e:
        print("Error installing faiss-cpu")
        print(e)

setup(
    name="retrieval-chatbot",
    version="0.2.0",
    author="Joe Armani",
    author_email="[email protected]",
    description="A retrieval-based chatbot with enhanced validation",
    long_description=long_description,
    long_description_content_type="text/markdown",
    packages=find_packages(),
    classifiers=[
        "Development Status :: 3 - Alpha",
        "Intended Audience :: Science/Research",
        "License :: OSI Approved :: MIT License",
        "Operating System :: OS Independent",
        "Programming Language :: Python :: 3",
        "Programming Language :: Python :: 3.8",
        "Programming Language :: Python :: 3.9",
        "Programming Language :: Python :: 3.10",
        "Topic :: Scientific/Engineering :: Artificial Intelligence",
        "Topic :: Text Processing :: Linguistic",
    ],
    python_requires=">=3.8",
    install_requires=requirements,
    extras_require={
        'dev': [
            'pytest>=7.0.0',
            'black>=22.0.0',
            'isort>=5.10.0',
            'mypy>=1.0.0',
        ],
        'gpu': [
            'faiss-gpu>=1.7.0',
        ],
    },
    entry_points={
        "console_scripts": [
            "dialogue-augment=dialogue_augmenter.main:main",
            "run-chatbot=chatbot.main:main",
        ],
    },
    include_package_data=True,
    package_data={
        "chatbot": ["config/*.yaml"],
        "dialogue_augmenter": ["data/*.json", "config/*.yaml"],
    },
)

if __name__ == '__main__':
    setup_spacy_models()
    setup_gpu_dependencies()
    setup_models()
    setup_nltk()
    setup_faiss()