File size: 34,011 Bytes
74af405
 
 
 
 
9b5daff
cc2577d
 
c7c1b4e
74af405
 
7a0020b
74af405
64e7c31
 
74af405
5b413d1
7a0020b
74af405
 
 
 
 
 
 
64e7c31
 
 
74af405
 
 
4aec49f
74af405
 
 
 
c7c1b4e
d7fc7a7
74af405
 
 
c7c1b4e
 
 
 
 
 
 
 
7a0020b
cc2577d
7a0020b
 
cc2577d
 
d7fc7a7
 
 
74af405
 
 
64e7c31
 
74af405
 
cc2577d
74af405
 
 
cc2577d
74af405
cc2577d
74af405
 
 
 
cc2577d
74af405
cc2577d
74af405
 
 
 
cc2577d
d7fc7a7
 
 
74af405
d7fc7a7
cc2577d
d7fc7a7
 
 
5b413d1
d7fc7a7
 
5b413d1
 
cc2577d
64e7c31
5b413d1
 
 
 
74af405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc2577d
7a0020b
 
cc2577d
 
7a0020b
cc2577d
7a0020b
cc2577d
9b5daff
7a0020b
74af405
 
 
 
 
c7c1b4e
cc2577d
7a0020b
 
 
 
 
 
 
cc2577d
7a0020b
 
74af405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64e7c31
5b413d1
74af405
64e7c31
 
74af405
64e7c31
 
 
cc2577d
64e7c31
7a0020b
 
 
74af405
64e7c31
cc2577d
64e7c31
7a0020b
 
64e7c31
 
 
 
7a0020b
64e7c31
 
 
7a0020b
cc2577d
64e7c31
7a0020b
cc2577d
64e7c31
7a0020b
 
64e7c31
 
7a0020b
 
cc2577d
7a0020b
64e7c31
74af405
cc2577d
7a0020b
 
cc2577d
7a0020b
74af405
 
cc2577d
74af405
 
cc2577d
74af405
 
7a0020b
 
 
 
 
cc2577d
7a0020b
74af405
cc2577d
 
 
 
74af405
cc2577d
7a0020b
 
cc2577d
 
7a0020b
cc2577d
7a0020b
cc2577d
 
74af405
7a0020b
 
 
 
 
 
 
74af405
cc2577d
 
7a0020b
 
cc2577d
7a0020b
 
cc2577d
7a0020b
cc2577d
74af405
cc2577d
74af405
 
 
 
 
7a0020b
74af405
 
 
cc2577d
74af405
 
 
 
 
7a0020b
74af405
 
 
cc2577d
7a0020b
 
cc2577d
7a0020b
 
 
 
 
 
cc2577d
7a0020b
cc2577d
7a0020b
 
 
cc2577d
7a0020b
 
 
cc2577d
7a0020b
 
 
 
 
 
 
 
 
cc2577d
7a0020b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc2577d
7a0020b
cc2577d
 
7a0020b
cc2577d
 
7a0020b
 
cc2577d
7a0020b
 
 
74af405
cc2577d
7a0020b
 
cc2577d
7a0020b
 
 
cc2577d
7a0020b
cc2577d
 
 
 
 
 
 
 
c7c1b4e
7a0020b
 
 
 
cc2577d
 
7a0020b
64e7c31
 
 
cc2577d
7a0020b
64e7c31
 
7a0020b
 
5b413d1
64e7c31
5b413d1
64e7c31
 
 
5b413d1
7a0020b
 
 
 
64e7c31
7a0020b
 
64e7c31
7a0020b
 
64e7c31
 
7a0020b
5b413d1
cc2577d
64e7c31
cc2577d
64e7c31
5b413d1
7a0020b
5b413d1
 
c7c1b4e
7a0020b
5b413d1
 
64e7c31
cc2577d
5b413d1
7a0020b
 
64e7c31
5b413d1
cc2577d
64e7c31
 
cc2577d
5b413d1
 
64e7c31
 
 
 
 
 
 
 
c7c1b4e
 
 
 
64e7c31
 
 
c7c1b4e
64e7c31
 
 
9b5daff
 
cc2577d
9b5daff
 
 
 
 
 
 
 
 
 
 
 
 
cc2577d
9b5daff
 
74af405
 
 
c7c1b4e
9b5daff
 
 
 
 
cc2577d
9b5daff
 
 
 
 
 
 
cc2577d
9b5daff
cc2577d
9b5daff
cc2577d
9b5daff
 
 
 
 
 
 
 
 
c7c1b4e
9b5daff
 
 
 
 
 
c7c1b4e
9b5daff
 
 
 
 
 
 
 
 
cc2577d
 
9b5daff
 
 
 
c7c1b4e
9b5daff
 
 
 
 
cc2577d
9b5daff
c7c1b4e
9b5daff
 
 
cc2577d
9b5daff
cc2577d
9b5daff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74af405
 
cc2577d
 
 
74af405
 
cc2577d
 
 
74af405
 
 
 
 
 
 
c7c1b4e
74af405
 
 
 
 
cc2577d
74af405
 
 
cc2577d
74af405
 
cc2577d
74af405
 
 
cc2577d
74af405
 
 
 
 
 
cc2577d
74af405
 
 
 
 
cc2577d
 
74af405
 
 
 
 
cc2577d
 
 
74af405
 
 
cc2577d
 
74af405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc2577d
 
74af405
cc2577d
74af405
 
c7c1b4e
74af405
 
 
cc2577d
c7c1b4e
 
 
74af405
 
 
 
 
 
 
 
 
 
 
 
cc2577d
 
 
74af405
 
 
cc2577d
 
74af405
cc2577d
74af405
 
cc2577d
74af405
 
 
cc2577d
74af405
 
 
 
 
 
cc2577d
74af405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc2577d
 
74af405
 
cc2577d
74af405
 
 
 
 
 
 
 
 
cc2577d
74af405
 
cc2577d
74af405
 
 
 
 
 
 
cc2577d
74af405
 
 
 
 
 
 
cc2577d
74af405
 
cc2577d
74af405
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
import os
import numpy as np
import faiss
import tensorflow as tf
import h5py
import math
import random
import gc
from tqdm.auto import tqdm
import json
from pathlib import Path
from typing import Union, Optional, Dict, List, Tuple, Generator
from transformers import AutoTokenizer
from sentence_transformers import SentenceTransformer
from chatbot_config import ChatbotConfig
from typing import List, Tuple, Generator
from transformers import AutoTokenizer
import random

from logger_config import config_logger
logger = config_logger(__name__)

class TFDataPipeline:
    def __init__(
        self,
        config: ChatbotConfig,
        tokenizer: AutoTokenizer,
        encoder: SentenceTransformer,
        response_pool: List[str],
        query_embeddings_cache: dict,
        index_type: str = 'IndexFlatIP',
        faiss_index_file_path: str = 'models/faiss_indices/faiss_index_production.index',
    ):
        self.config = config
        self.tokenizer = tokenizer
        self.encoder = encoder
        self.model = SentenceTransformer(config.pretrained_model)
        self.faiss_index_file_path = faiss_index_file_path
        self.response_pool = response_pool
        self.query_embeddings_cache = query_embeddings_cache # In-memory cache for embeddings
        self.index_type = index_type
        self.neg_samples = config.neg_samples
        self.nlist = config.nlist
        self.dimension = config.embedding_dim
        self.max_context_length = config.max_context_length
        self.embedding_batch_size = config.embedding_batch_size
        self.search_batch_size = config.search_batch_size
        self.max_batch_size = config.max_batch_size
        self.max_retries = config.max_retries
        
        # Build text -> domain map for O(1) domain lookups (hard negative sampling)
        self._text_domain_map = {}
        self.build_text_to_domain_map()
        
        # Initialize FAISS index
        if os.path.exists(faiss_index_file_path):
            logger.info(f"Loading existing FAISS index from {faiss_index_file_path}...")
            self.index = faiss.read_index(faiss_index_file_path)
            self.validate_faiss_index()
            logger.info("FAISS index loaded and validated successfully.")
        else:
            self.index = faiss.IndexFlatIP(self.dimension)
            logger.info(f"Initialized FAISS IndexFlatIP with dimension {self.dimension}.")
            
        if not self.index.is_trained:
            # Train the index if it's not trained. IndexFlatIP doesn't need training, but others do (Future switch to IndexIVFFlat)
            dimension = self.query_embeddings_cache[next(iter(self.query_embeddings_cache))].shape[0]
            self.index.train(np.array(list(self.query_embeddings_cache.values())).astype(np.float32))
            self.index.add(np.array(list(self.query_embeddings_cache.values())).astype(np.float32))
    
    def save_embeddings_cache_hdf5(self, cache_file_path: str):
        """Save embeddings cache to HDF5 file."""
        with h5py.File(cache_file_path, 'w') as hf:
            for query, emb in self.query_embeddings_cache.items():
                hf.create_dataset(query, data=emb)
        logger.info(f"Embeddings cache saved to {cache_file_path}.")
    
    def load_embeddings_cache_hdf5(self, cache_file_path: str):
        """Load embeddings cache from HDF5 file."""
        with h5py.File(cache_file_path, 'r') as hf:
            for query in hf.keys():
                self.query_embeddings_cache[query] = hf[query][:]
        logger.info(f"Embeddings cache loaded from {cache_file_path}.")
    
    def save_faiss_index(self, faiss_index_file_path: str):
        faiss.write_index(self.index, faiss_index_file_path)
        logger.info(f"FAISS index saved to {faiss_index_file_path}")
    
    def load_faiss_index(self, faiss_index_file_path: str):
        """Load FAISS index from specified file path."""
        if os.path.exists(faiss_index_file_path):
            self.index = faiss.read_index(faiss_index_file_path)
            logger.info(f"FAISS index loaded from {faiss_index_file_path}.")
        else:
            logger.error(f"FAISS index file not found at {faiss_index_file_path}.")
            raise FileNotFoundError(f"FAISS index file not found at {faiss_index_file_path}.")
    
    def validate_faiss_index(self):
        """Validates FAISS index dimensionality."""
        expected_dim = self.dimension
        if self.index.d != expected_dim:
            logger.error(f"FAISS index dimension {self.index.d} does not match encoder embedding dimension {expected_dim}.")
            raise ValueError("FAISS index dimensionality mismatch.")
        logger.info("FAISS index dimension validated successfully.")
    
    def save_tokenizer(self, tokenizer_dir: str):
        self.tokenizer.save_pretrained(tokenizer_dir)
        logger.info(f"Tokenizer saved to {tokenizer_dir}")
    
    def load_tokenizer(self, tokenizer_dir: str):
        self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_dir)
        logger.info(f"Tokenizer loaded from {tokenizer_dir}")
    
    @staticmethod
    def load_json_training_data(data_path: Union[str, Path], debug_samples: Optional[int] = None) -> List[dict]:
        """
        Load training data from a JSON file.
        Args:
            data_path (Union[str, Path]): Path to the JSON file containing dialogues.
            debug_samples (Optional[int]): Number of samples to load for debugging.
        
        Returns:
            List[dict]: List of dialogue dictionaries.
        """
        logger.info(f"Loading training data from {data_path}...")
        data_path = Path(data_path)
        if not data_path.exists():
            logger.error(f"Data file {data_path} does not exist.")
            return []
        
        with open(data_path, 'r', encoding='utf-8') as f:
            dialogues = json.load(f)
        
        if debug_samples is not None:
            dialogues = dialogues[:debug_samples]
            logger.info(f"Debug mode: Limited to {debug_samples} dialogues")
        
        logger.info(f"Loaded {len(dialogues)} dialogues.")
        return dialogues
    
    def collect_responses_with_domain(self, dialogues: List[dict]) -> List[Dict[str, str]]:
        """
        Extract unique assistant responses and their domains from dialogues.
        Returns List[Dict[str: "domain", str: text"]]
        """
        response_set = set()  # Store (domain, text) unique tuples
        results = []
        
        for dialogue in tqdm(dialogues, desc="Processing Dialogues", unit="dialogue"):
            domain = dialogue.get('domain', 'other')
            turns = dialogue.get('turns', [])
            for turn in turns:
                speaker = turn.get('speaker')
                text = turn.get('text', '').strip()
                if speaker == 'assistant' and text:
                    if len(text) <= self.max_context_length:
                        # Use tuple as set key to ensure uniqueness
                        key = (domain, text)
                        if key not in response_set:
                            response_set.add(key)
                            results.append({
                                "domain": domain,
                                "text": text
                            })
        
        logger.info(f"Collected {len(results)} unique assistant responses from dialogues.")
        return results
    
    def _extract_pairs_from_dialogue(self, dialogue: dict) -> List[Tuple[str, str]]:
        """Extract query-response pairs from a dialogue."""
        pairs = []
        turns = dialogue.get('turns', [])
        
        for i in range(len(turns) - 1):
            current_turn = turns[i]
            next_turn = turns[i+1]
            
            if (current_turn.get('speaker') == 'user' and
                next_turn.get('speaker') == 'assistant' and
                'text' in current_turn and 
                'text' in next_turn):
                
                query = current_turn['text'].strip()
                positive = next_turn['text'].strip()
                pairs.append((query, positive))
                
        return pairs

    def compute_and_index_response_embeddings(self):
        """
        Compute embeddings for the response pool using SentenceTransformer
        and add them to the FAISS index.
        """
        if not self.response_pool:
            logger.warning("Response pool is empty. No embeddings to compute.")
            return
        
        logger.info("Computing embeddings for the response pool...")
        texts = [resp["text"] for resp in self.response_pool]
        logger.debug(f"Total texts to embed: {len(texts)}")
        
        embeddings = []
        batch_size = self.embedding_batch_size
        
        # Use SentenceTransformer to compute embeddings in batches
        with tqdm(total=len(texts), desc="Computing Embeddings", unit="response") as pbar:
            for i in range(0, len(texts), batch_size):
                batch_texts = texts[i:i + batch_size]
                
                # Compute embeddings
                batch_embeddings = self.encoder.encode(
                    batch_texts,
                    batch_size=batch_size,
                    convert_to_numpy=True,
                    normalize_embeddings=True  # Normalizes for cosine similarity
                )
                
                embeddings.append(batch_embeddings)
                pbar.update(len(batch_texts))
        
        # Combine all embeddings
        all_embeddings = np.vstack(embeddings).astype(np.float32)
        logger.info(f"Adding {len(all_embeddings)} response embeddings to FAISS index...")
        
        # Add to FAISS index
        self.index.add(all_embeddings)
        
        # Store in memory
        self.response_embeddings = all_embeddings
        logger.info(f"FAISS index now contains {self.index.ntotal} vectors.")
    
    def _find_hard_negatives(self, queries: List[str], positives: List[str], batch_size: int = 128) -> List[List[str]]:
        """
        Find hard negatives for a batch of queries using FAISS search.
        Fallback: in-domain negatives, then random negatives when needed.
        """
        retry_count = 0
        total_responses = len(self.response_pool)
        
        while retry_count < self.max_retries:
            try:
                # Build query embeddings from the cache
                query_embeddings = []
                for i in range(0, len(queries), batch_size):
                    sub_queries = queries[i : i + batch_size]
                    sub_embeds = [self.query_embeddings_cache[q] for q in sub_queries]
                    sub_embeds = np.vstack(sub_embeds).astype(np.float32)
                    faiss.normalize_L2(sub_embeds)  # If not already normalized
                    query_embeddings.append(sub_embeds)
                    
                query_embeddings = np.vstack(query_embeddings)
                query_embeddings = np.ascontiguousarray(query_embeddings)
                
                # FAISS search for nearest neighbors (hard negatives)
                distances, indices = self.index.search(query_embeddings, self.neg_samples)
                
                all_negatives = []
                # Extract domain from the positive assistant response
                for query_indices, query_text, pos_text in zip(indices, queries, positives):
                    negative_list = []
                    
                    # Build a 'seen' set with the positive
                    seen = {pos_text.strip()}
                    
                    domain_of_positive = self._detect_domain_for_text(pos_text)
                    
                    # Collect hard negatives (from config self.neg_samples)
                    for idx in query_indices:
                        if 0 <= idx < total_responses:
                            candidate_dict = self.response_pool[idx]  # e.g. {domain, text}
                            candidate_text = candidate_dict["text"].strip()
                            if candidate_text and candidate_text not in seen:
                                seen.add(candidate_text)
                                negative_list.append(candidate_text)
                                if len(negative_list) >= self.neg_samples:
                                    break
                    
                    # Fall back to random domain-based
                    if len(negative_list) < self.neg_samples:
                        needed = self.neg_samples - len(negative_list)
                        
                        random_negatives = self._get_random_negatives(needed, seen, domain=domain_of_positive)
                        negative_list.extend(random_negatives)
                        
                    all_negatives.append(negative_list)
                    
                return all_negatives
            
            except KeyError as ke:
                retry_count += 1
                logger.warning(f"Hard negative search attempt {retry_count} failed due to missing embeddings: {ke}")
                if retry_count == self.max_retries:
                    logger.error("Max retries reached for hard negative search due to missing embeddings.")
                    return self._fallback_negatives(queries, positives, reason="key_error")
                gc.collect()
                if tf.config.list_physical_devices('GPU'):
                    tf.keras.backend.clear_session()
            
            except Exception as e:
                retry_count += 1
                logger.warning(f"Hard negative search attempt {retry_count} failed: {e}")
                if retry_count == self.max_retries:
                    logger.error("Max retries reached for hard negative search.")
                    return self._fallback_negatives(queries, positives, reason="generic_error")
                gc.collect()
                if tf.config.list_physical_devices('GPU'):
                    tf.keras.backend.clear_session()
                    
    def _detect_domain_for_text(self, text: str) -> Optional[str]:
        """
        Domain detection for related negatives.
        """
        stripped_text = text.strip()
        return self._text_domain_map.get(stripped_text, None)
    
    def _get_random_negatives(self, needed: int, seen: set, domain: Optional[str] = None) -> List[str]:
        """
        Return a list of negative texts from the same domain. Fall back to any domain.
        """
        # Filter response_pool for domain
        if domain:
            domain_texts = [r["text"] for r in self.response_pool if r["domain"] == domain]
            # fallback to entire set if insufficient domain_texts
            if len(domain_texts) < needed * 2:
                domain_texts = [r["text"] for r in self.response_pool]
        else:
            domain_texts = [r["text"] for r in self.response_pool]
        
        negatives = []
        tries = 0
        max_tries = needed * 10
        while len(negatives) < needed and tries < max_tries:
            tries += 1
            candidate = random.choice(domain_texts).strip()
            if candidate and candidate not in seen:
                negatives.append(candidate)
                seen.add(candidate)
        
        if len(negatives) < needed:
            logger.warning(f"Could not find enough domain-based random negatives; needed {needed}, got {len(negatives)}.")
            
        return negatives
    
    def _fallback_negatives(self, queries: List[str], positives: List[str], reason: str) -> List[List[str]]:
        """
        Called if FAISS fails or embeddings are missing.
        We use entirely random negatives for each query, ignoring FAISS,
        but still attempt domain-based selection if possible.
        """
        logger.error(f"Falling back to random negatives due to: {reason}")
        all_negatives = []
        
        for pos_text in positives:
            # Build a 'seen' set with the positive assistant response
            seen = {pos_text.strip()}
            
            # Detect domain of the positive
            domain_of_positive = self._detect_domain_for_text(pos_text)
            
            # Use domain-based negatives when available
            negs = self._get_random_negatives(self.neg_samples, seen, domain=domain_of_positive)
            all_negatives.append(negs)
            
        return all_negatives
    
    def build_text_to_domain_map(self):
        """
        Build O(1) lookup dict: text -> domain for hard negative sampling.
        """
        self._text_domain_map = {}
        
        for item in self.response_pool:
            stripped_text = item["text"].strip()
            domain = item["domain"]
            
            if stripped_text in self._text_domain_map:
                #existing_domain = self._text_domain_map[stripped_text]
                #if existing_domain != domain:
                    # Collision detected. Using first found domain for now.
                    # This happens often with low-signal responses. "ok", "yes", etc.
                    # logger.warning(
                    #     f"Collision detected: text '{stripped_text}' found with domains "
                    #     f"'{existing_domain}' and '{domain}'. Keeping the first."
                    # )
                # By default, keep the first domain or overwrite. Skip overwriting:
                continue
            else:
                # Insert into the dict
                self._text_domain_map[stripped_text] = domain
        
        logger.info(f"Built text -> domain map with {len(self._text_domain_map)} unique text entries.")

    def encode_query(self, query: str) -> np.ndarray:
        """Generate embedding for a query string."""
        return self.encoder.encode(query, convert_to_numpy=True)
    
    def encode_responses(
        self,
        responses: List[str],
        context: Optional[List[Tuple[str, str]]] = None
    ) -> np.ndarray:
        """
        Encode multiple response texts into embeddings, injecting <ASSISTANT> literally.
        """
        USER_TOKEN = "<USER>"
        ASSISTANT_TOKEN = "<ASSISTANT>"

        if context:
            relevant_history = context[-self.config.max_context_turns:]
            prepared = []
            for resp in responses:
                context_str_parts = []
                # Build all user->assistant text
                for (u_text, a_text) in relevant_history:
                    context_str_parts.append(
                        f"{USER_TOKEN} {u_text} {ASSISTANT_TOKEN} {a_text}"
                    )
                context_str = " ".join(context_str_parts)
                # Treat resp as an assistant turn:
                full_resp = f"{context_str} {ASSISTANT_TOKEN} {resp}"
                prepared.append(full_resp)
        else:
            # Single response from the assistant
            prepared = [f"{ASSISTANT_TOKEN} {r}" for r in responses]
        
        # Pass the prepared strings to the SentenceTransformer tokenizer:
        encodings = self.tokenizer(
            prepared,
            padding='max_length',
            truncation=True,
            max_length=self.max_context_length,
            return_tensors='np'
        )
        input_ids = encodings['input_ids']

        # Debug for out-of-vocab
        max_id = np.max(input_ids)
        vocab_size = len(self.tokenizer)
        if max_id >= vocab_size:
            logger.error(f"Token ID {max_id} >= tokenizer vocab size {vocab_size}")
            raise ValueError("Token ID exceeds vocabulary size.")
        
        # Get embeddings from SentenceTransformer
        embeddings = self.encoder.encode(prepared, convert_to_numpy=True)
        
        return embeddings.astype('float32')
    
    def retrieve_responses(self, query: str, top_k: int = 10) -> List[Tuple[str, float]]:
        """
        Retrieve top-k responses for a query using FAISS.
        """
        query_embedding = self.encode_query(query).reshape(1, -1).astype("float32")
        distances, indices = self.index.search(query_embedding, top_k)
        
        results = []
        for idx, dist in tqdm(
            zip(indices[0], distances[0]),
            disable=True # Silence tqdm
        ):
            if idx < 0:
                continue
            response = self.response_pool[idx]
            results.append((response, dist))
        
        return results
    
    def prepare_and_save_data(self, dialogues: List[dict], tf_record_path: str, batch_size: int = 32):
        """
        Batch-Process dialogues and save to TFRecord file.
        """
        logger.info(f"Preparing and saving data to {tf_record_path}...")
        
        num_dialogues = len(dialogues)
        num_batches = math.ceil(num_dialogues / batch_size)
        
        with tf.io.TFRecordWriter(tf_record_path) as writer:
            with tqdm(total=num_batches, desc="Preparing Data Batches", unit="batch") as pbar:
                for i in range(num_batches):
                    start_idx = i * batch_size
                    end_idx = min(start_idx + batch_size, num_dialogues)
                    batch_dialogues = dialogues[start_idx:end_idx]
                    
                    # Extract query-positive pairs for the batch
                    queries = []
                    positives = []
                    for dialogue in batch_dialogues:
                        pairs = self._extract_pairs_from_dialogue(dialogue)
                        for query, positive in pairs:
                            if len(query) <= self.max_context_length and len(positive) <= self.max_context_length:
                                queries.append(query)
                                positives.append(positive)
                    
                    if not queries:
                        pbar.update(1)
                        continue
                    
                    # Compute and cache query embeddings
                    try:
                        self._compute_embeddings(queries)
                    except Exception as e:
                        logger.error(f"Error computing embeddings: {e}")
                        pbar.update(1)
                        continue
                    
                    # Find hard negatives
                    try:
                        hard_negatives = self._find_hard_negatives(queries, positives)
                    except Exception as e:
                        logger.error(f"Error finding hard negatives: {e}")
                        pbar.update(1)
                        continue  # Skip to the next batch
                    
                    # Tokenize and encode all queries, positives, and negatives in the batch
                    try:
                        encoded_queries = self.tokenizer.batch_encode_plus(
                            queries,
                            max_length=self.config.max_context_length,
                            truncation=True,
                            padding='max_length',
                            return_tensors='tf'
                        )
                        encoded_positives = self.tokenizer.batch_encode_plus(
                            positives,
                            max_length=self.config.max_context_length,
                            truncation=True,
                            padding='max_length',
                            return_tensors='tf'
                        )
                    except Exception as e:
                        logger.error(f"Error during tokenization: {e}")
                        pbar.update(1)
                        continue  # Skip to the next batch
                    
                    # Flatten hard_negatives. Maintain alignment.
                    # hard_negatives is List of Lists. Each sublist corresponds to a query.
                    try:
                        flattened_negatives = [neg for sublist in hard_negatives for neg in sublist]
                        encoded_negatives = self.tokenizer.batch_encode_plus(
                            flattened_negatives,
                            max_length=self.config.max_context_length,
                            truncation=True,
                            padding='max_length',
                            return_tensors='tf'
                        )
                        
                        # Reshape to [num_queries, num_negatives, max_length]
                        num_negatives = self.config.neg_samples
                        reshaped_negatives = encoded_negatives['input_ids'].numpy().reshape(-1, num_negatives, self.config.max_context_length)
                    except Exception as e:
                        logger.error(f"Error during negatives tokenization: {e}")
                        pbar.update(1)
                        continue
                    
                    # Serialize and write to TFRecord
                    for j in range(len(queries)):
                        try:
                            q_id = encoded_queries['input_ids'][j].numpy()
                            p_id = encoded_positives['input_ids'][j].numpy()
                            n_id = reshaped_negatives[j]
                            
                            feature = {
                                'query_ids': tf.train.Feature(int64_list=tf.train.Int64List(value=q_id)),
                                'positive_ids': tf.train.Feature(int64_list=tf.train.Int64List(value=p_id)),
                                'negative_ids': tf.train.Feature(int64_list=tf.train.Int64List(value=n_id.flatten())),
                            }
                            example = tf.train.Example(features=tf.train.Features(feature=feature))
                            writer.write(example.SerializeToString())
                        except Exception as e:
                            logger.error(f"Error serializing example {j} in batch {i}: {e}")
                            continue  # Skip to the next example
                    
                    # Update progress bar
                    pbar.update(1)
        
        logger.info(f"Data preparation complete. TFRecord saved.")
        
    def _compute_embeddings(self, queries: List[str]) -> None:
        """
        Compute embeddings for new queries and update the cache.
        """
        new_queries = [q for q in queries if q not in self.query_embeddings_cache]
        if not new_queries:
            return
        
        # Compute embeddings
        new_embeddings = []
        for i in range(0, len(new_queries), self.embedding_batch_size):
            batch_queries = new_queries[i:i + self.embedding_batch_size]
            encoded = self.tokenizer(
                batch_queries,
                padding=True,
                truncation=True,
                max_length=self.max_context_length,
                return_tensors='tf'
            )
            batch_embeddings = self.encoder(encoded['input_ids'], training=False).numpy()
            faiss.normalize_L2(batch_embeddings)
            new_embeddings.extend(batch_embeddings)
        
        # Update the cache
        for query, emb in zip(new_queries, new_embeddings):
            self.query_embeddings_cache[query] = emb
    
    def data_generator(self, dialogues: List[dict]) -> Generator[Tuple[str, str, List[str]], None, None]:
        """
        Generate training examples: (query, positive, [hard_negatives]).
        """
        total_dialogues = len(dialogues)
        logger.debug(f"Total dialogues to process: {total_dialogues}")
        
        with tqdm(total=total_dialogues, desc="Processing Dialogues", unit="dialogue") as pbar:
            for dialogue in dialogues:
                pairs = self._extract_pairs_from_dialogue(dialogue)
                for query, positive in pairs:
                    # Ensure embeddings are computed, find hard negatives, etc.
                    self._compute_embeddings([query])
                    hard_negatives = self._find_hard_negatives([query], [positive])[0]
                    yield (query, positive, hard_negatives)
                pbar.update(1)

    def get_tf_dataset(self, dialogues: List[dict], batch_size: int) -> tf.data.Dataset:
        """
        Creates a tf.data.Dataset for streaming training.
        yields (input_ids_query, input_ids_positive, input_ids_negatives).
        """
        # 1) Start with a generator dataset
        dataset = tf.data.Dataset.from_generator(
            lambda: self.data_generator(dialogues),
            output_signature=(
                tf.TensorSpec(shape=(), dtype=tf.string),                   # Query (single string)
                tf.TensorSpec(shape=(), dtype=tf.string),                   # Positive (single string)
                tf.TensorSpec(shape=(self.neg_samples,), dtype=tf.string)   # Hard Negatives (list of strings)
            )
        )
        
        # Batch the raw strings, then map through a tokenize step
        # Note 'Distilbert Tokenizer threw an error when using tf.data.AUTOTUNE.
        dataset = dataset.batch(batch_size, drop_remainder=True)
        dataset = dataset.map(
            lambda q, p, n: self._tokenize_triple(q, p, n),
            num_parallel_calls=1 #tf.data.AUTOTUNE
        )

        dataset = dataset.prefetch(tf.data.AUTOTUNE)
        return dataset
    
    def _tokenize_triple(
        self, 
        q: tf.Tensor, 
        p: tf.Tensor, 
        n: tf.Tensor
    ) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]:
        """
        Wraps a Python function. Convert tf.Tensors of strings -> Python lists of strings -> HF tokenizer -> Tensors of IDs.
        q is shape [batch_size], p is shape [batch_size], n is shape [batch_size, neg_samples] (list of negatives).
        """
        # Use tf.py_function, limit parallelism
        q_ids, p_ids, n_ids = tf.py_function(
            func=self._tokenize_triple_py,
            inp=[q, p, n, tf.constant(self.max_context_length), tf.constant(self.neg_samples)],
            Tout=[tf.int32, tf.int32, tf.int32]
        )

        # Set shape info for the output tensors
        q_ids.set_shape([None, self.max_context_length])                    # [batch_size, max_length]
        p_ids.set_shape([None, self.max_context_length])                    # [batch_size, max_length]
        n_ids.set_shape([None, self.neg_samples, self.max_context_length])  # [batch_size, neg_samples, max_length]

        return q_ids, p_ids, n_ids

    def _tokenize_triple_py(
        self, 
        q: tf.Tensor, 
        p: tf.Tensor, 
        n: tf.Tensor,
        max_len: tf.Tensor,
        neg_samples: tf.Tensor
    ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
        """
        Decodes tf.string Tensor to Python List[str], then tokenize.
        Reshapes negatives to [batch_size, neg_samples, max_length].
        Returns np.array(int32) for (q_ids, p_ids, n_ids).
        
        q: shape [batch_size], p: shape [batch_size]
        n: shape [batch_size, neg_samples]
        max_len: int
        neg_samples: int
        """
        max_len = int(max_len.numpy())
        neg_samples = int(neg_samples.numpy())

        # Convert Tensors -> Python List[str]
        q_list = [q_i.decode("utf-8") for q_i in q.numpy()]  # shape [batch_size]
        p_list = [p_i.decode("utf-8") for p_i in p.numpy()]  # shape [batch_size]

        # Shape [batch_size, neg_samples], decode each row
        n_list = []
        for row in n.numpy():
            # row is shape [neg_samples], each is a tf.string
            decoded = [neg.decode("utf-8") for neg in row]
            n_list.append(decoded)

        # Tokenize queries & positives
        q_enc = self.tokenizer(
            q_list,
            padding="max_length",
            truncation=True,
            max_length=max_len,
            return_tensors="np"
        )
        p_enc = self.tokenizer(
            p_list,
            padding="max_length",
            truncation=True,
            max_length=max_len,
            return_tensors="np"
        )

        # Tokenize negatives
        # Flatten [batch_size, neg_samples] -> List
        flattened_negatives = [neg for row in n_list for neg in row]
        if len(flattened_negatives) == 0:
            # No negatives: return a zero array
            n_ids = np.zeros((len(q_list), neg_samples, max_len), dtype=np.int32)
        else:
            n_enc = self.tokenizer(
                flattened_negatives,
                padding="max_length",
                truncation=True,
                max_length=max_len,
                return_tensors="np"
            )
            # Shape [batch_size * neg_samples, max_len]
            n_input_ids = n_enc["input_ids"]

            # Reshape to [batch_size, neg_samples, max_len]
            batch_size = len(q_list)
            n_ids_list = []
            for i in range(batch_size):
                start_idx = i * neg_samples
                end_idx = start_idx + neg_samples
                row_negs = n_input_ids[start_idx:end_idx]

                # Pad with zeros if not enough negatives
                if row_negs.shape[0] < neg_samples:
                    deficit = neg_samples - row_negs.shape[0]
                    pad_arr = np.zeros((deficit, max_len), dtype=np.int32)
                    row_negs = np.concatenate([row_negs, pad_arr], axis=0)

                n_ids_list.append(row_negs)

            # Stack shape [batch_size, neg_samples, max_len]
            n_ids = np.stack(n_ids_list, axis=0)

        # Return np.int32 arrays
        q_ids = q_enc["input_ids"].astype(np.int32)  # shape [batch_size, max_len]
        p_ids = p_enc["input_ids"].astype(np.int32)  # shape [batch_size, max_len]
        n_ids = n_ids.astype(np.int32)               # shape [batch_size, neg_samples, max_len]

        return q_ids, p_ids, n_ids