|
from transformers import ( |
|
AutoTokenizer, |
|
AutoModelForSeq2SeqLM, |
|
) |
|
|
|
class Paraphraser: |
|
def __init__(self, model_name='humarin/chatgpt_paraphraser_on_T5_base'): |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name) |
|
self.model.eval() |
|
|
|
def paraphrase(self, text, num_return_sequences=5, num_beams=5, |
|
num_beam_groups=1, diversity_penalty=0.0, device=None): |
|
try: |
|
input_text = "paraphrase: " + text + " </s>" |
|
encoding = self.tokenizer.encode_plus(input_text, return_tensors="pt") |
|
|
|
|
|
if device is not None: |
|
input_ids = encoding["input_ids"].to(device) |
|
self.model = self.model.to(device) |
|
else: |
|
input_ids = encoding["input_ids"] |
|
|
|
outputs = self.model.generate( |
|
input_ids=input_ids, |
|
max_length=256, |
|
num_beams=num_beams, |
|
num_beam_groups=num_beam_groups, |
|
num_return_sequences=num_return_sequences, |
|
diversity_penalty=diversity_penalty, |
|
early_stopping=True |
|
) |
|
|
|
|
|
outputs = outputs.cpu() if device is not None else outputs |
|
paraphrases = [self.tokenizer.decode(output, skip_special_tokens=True) |
|
for output in outputs] |
|
return paraphrases |
|
except Exception as e: |
|
print(f"Error in paraphrasing: {e}") |
|
return [] |