csc525_retrieval_based_chatbot / processing_pipeline.py
JoeArmani
update gpu processing
bc503de
raw
history blame
11.3 kB
from datetime import datetime
from pathlib import Path
from typing import List, Dict, Optional
import json
import re
import hashlib
import spacy
import torch
from tqdm import tqdm
from pipeline_config import PipelineConfig
from dialogue_augmenter import DialogueAugmenter
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from concurrent.futures import ProcessPoolExecutor
from typing import Set
class ProcessingPipeline:
"""
Complete pipeline combining validation, optimization, and augmentation.
"""
def __init__(self, config: Optional[PipelineConfig] = None):
self.config = config or PipelineConfig()
self.nlp = spacy.load("en_core_web_sm", disable=['parser', 'ner'])
self.augmenter = DialogueAugmenter(self.nlp, self.config)
self.num_threads = self.config.batch_size
self.cache_dir = Path("./cache")
self.cache_dir.mkdir(exist_ok=True)
self.output_dir = Path("processed_outputs")
self.output_dir.mkdir(exist_ok=True)
self.checkpoint_file = self.output_dir / "processing_checkpoint.json"
self.batch_size = self.config.batch_size
self.use_gpu = torch.cuda.is_available()
self.batch_size = 32 if self.use_gpu else 8
self.use_multiprocessing = not self.use_gpu
if self.config.debug:
print(f"ProcessingPipeline initialized with:")
print(f"- GPU available: {self.use_gpu}")
print(f"- Batch size: {self.batch_size}")
print(f"- Using multiprocessing: {self.use_multiprocessing}")
def _save_batch(self, batch_results: List[Dict], batch_num: int) -> Path:
"""Save a batch of results to a separate JSON file"""
batch_file = self.output_dir / f"batch_{batch_num:04d}.json"
with open(batch_file, 'w') as f:
json.dump(batch_results, f)
return batch_file
def _load_checkpoint(self) -> set:
"""Load set of processed dialogue IDs from checkpoint"""
if self.checkpoint_file.exists():
with open(self.checkpoint_file, 'r') as f:
return set(json.load(f))
return set()
def _update_checkpoint(self, processed_ids: set):
"""Update checkpoint with newly processed IDs"""
with open(self.checkpoint_file, 'w') as f:
json.dump(list(processed_ids), f)
def _process_batch(self, batch: List[Dict]) -> List[Dict]:
"""Process batch with optimized model calls"""
results = []
try:
if self.use_gpu:
results = self.augmenter.process_batch(batch)
else:
# Collect all texts that need processing
all_texts = []
text_to_dialogue_map = {}
for dialogue in batch:
for turn in dialogue['turns']:
all_texts.append(turn['text'])
text_to_dialogue_map[turn['text']] = dialogue['dialogue_id']
# Batch process embeddings
embeddings = self.augmenter._compute_batch_embeddings(all_texts)
# Process dialogues with cached embeddings
for dialogue in batch:
try:
augmented = self.augmenter.augment_dialogue(dialogue)
results.extend(augmented)
except Exception as e:
print(f"Error processing dialogue {dialogue.get('dialogue_id', 'unknown')}: {str(e)}")
continue
except Exception as e:
print(f"Error processing batch: {str(e)}")
return results
def combine_results(self) -> Path:
"""Combine all batch files into final output"""
all_results = []
batch_files = sorted(self.output_dir.glob("batch_*.json"))
print(f"Combining {len(batch_files)} batch files...")
for batch_file in tqdm(batch_files):
with open(batch_file, 'r') as f:
batch_data = json.load(f)
all_results.extend(batch_data)
# Save combined results
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
final_output = self.output_dir / f"augmented_dataset_{timestamp}.json"
with open(final_output, 'w') as f:
json.dump(all_results, f)
if self.config.debug:
print(f"Combined {len(all_results)} dialogues into {final_output}")
return final_output
def process_dataset(self, dialogues: List[Dict]) -> Path:
"""Process dataset with hardware-appropriate optimizations and progress tracking"""
processed_ids = self._load_checkpoint()
# Filter out already processed dialogues
remaining_dialogues = [d for d in dialogues
if d['dialogue_id'] not in processed_ids]
total_dialogues = len(dialogues)
remaining_count = len(remaining_dialogues)
processed_count = total_dialogues - remaining_count
print("\nDataset Processing Status:")
print(f"Total dialogues in dataset: {total_dialogues}")
print(f"Previously processed: {processed_count}")
print(f"Remaining to process: {remaining_count}")
print("-" * 50)
# Process in batches with progress bar
for batch_num in tqdm(range(0, len(remaining_dialogues), self.batch_size),
desc="Processing batches",
total=(len(remaining_dialogues) + self.batch_size - 1) // self.batch_size):
batch = remaining_dialogues[batch_num:batch_num + self.batch_size]
current_position = processed_count + batch_num + len(batch)
total_progress = (current_position / total_dialogues) * 100
batch_progress = (batch_num + 1) / ((len(remaining_dialogues) + self.batch_size - 1) // self.batch_size) * 100
print(f"\rProgress: {current_position}/{total_dialogues} dialogues "
f"({total_progress:.1f}% complete) - "
f"Batch {batch_num//self.batch_size + 1} of "
f"{(len(remaining_dialogues) + self.batch_size - 1) // self.batch_size}", end="")
# Process batch
batch_results = self._process_batch(batch)
if batch_results:
self._save_batch(batch_results, batch_num)
batch_ids = {d['dialogue_id'] for d in batch}
processed_ids.update(batch_ids)
self._update_checkpoint(processed_ids)
print("\n" + "-" * 50)
print("Processing complete. Combining results...")
return self.combine_results()
def cleanup(self):
"""Clean up intermediate batch files after successful processing"""
batch_files = list(self.output_dir.glob("batch_*.json"))
for file in batch_files:
try:
file.unlink()
except Exception as e:
print(f"Error deleting {file}: {e}")
if self.checkpoint_file.exists():
try:
self.checkpoint_file.unlink()
except Exception as e:
print(f"Error deleting checkpoint file: {e}")
def _deduplicate_dialogues(self, dialogues: List[Dict], threshold: float = 0.9) -> List[Dict]:
"""
Deduplicate dialogues based on text similarity.
"""
print("Deduplicating dialogues...")
if not dialogues:
print("No dialogues provided for deduplication.")
return []
# Combine turns into single text for similarity comparison
texts = [" ".join(turn['text'] for turn in dialogue['turns']) for dialogue in dialogues]
tfidf = TfidfVectorizer().fit_transform(texts)
sim_matrix = cosine_similarity(tfidf)
unique_indices = set()
for i, row in enumerate(sim_matrix):
if i not in unique_indices:
similar_indices = [j for j, sim in enumerate(row) if sim > threshold and j != i]
unique_indices.add(i)
unique_indices.difference_update(similar_indices)
deduplicated_dialogues = [dialogues[i] for i in unique_indices]
print(f"Deduplication complete. Reduced from {len(dialogues)} to {len(deduplicated_dialogues)} dialogues.")
return deduplicated_dialogues
def _validate_and_clean_dialogue(self, dialogue: Dict) -> Optional[Dict]:
"""
Validate and clean a single dialogue.
"""
try:
# Check required fields
if not all(field in dialogue for field in self.config.required_fields):
return None
# Process turns
cleaned_turns = []
for turn in dialogue['turns']:
if self._validate_turn(turn):
cleaned_turn = {
'speaker': turn['speaker'],
'text': self._clean_text(turn['text'])
}
cleaned_turns.append(cleaned_turn)
if cleaned_turns:
return {
'dialogue_id': dialogue['dialogue_id'],
'turns': cleaned_turns
}
return None
except Exception as e:
print(f"Error processing dialogue {dialogue.get('dialogue_id', 'unknown')}: {str(e)}")
return None
def _validate_turn(self, turn: Dict) -> bool:
"""
Validate a single speaking turn.
"""
return (
turn['speaker'] in self.config.allowed_speakers and
self.config.min_length <= len(turn['text']) <= self.config.max_length
)
def _clean_text(self, text: str) -> str:
"""
Clean and normalize text.
"""
# Remove excessive whitespace
text = re.sub(r'\s+', ' ', text.strip())
# Normalize quotes and apostrophes
text = re.sub(r'[’´`]', "'", text)
text = re.sub(r'[β€œβ€]', '"', text)
# Remove control characters
text = "".join(char for char in text if ord(char) >= 32 or char == '\n')
return text
def _process_validation(self, items: List, func, description: str) -> List:
"""
Process items sequentially with a progress bar.
"""
results = []
print(f"Starting {description}")
for item in tqdm(items, desc=description):
try:
result = func(item)
if result is not None:
results.append(result)
except Exception as e:
print(f"Error processing item: {str(e)}")
print(f"Completed {description}. Processed {len(results)} items successfully")
return results
def _get_cache_path(self, data: List[Dict]) -> Path:
"""
Generate cache file path based on data hash.
"""
data_str = json.dumps(data, sort_keys=True)
hash_value = hashlib.md5(data_str.encode()).hexdigest()
return self.cache_dir / f"cache_{hash_value}.pkl"