csc525_retrieval_based_chatbot / chatbot_model.py
JoeArmani
improve split processes
9b5daff
raw
history blame
68.6 kB
import time
from transformers import TFAutoModel, AutoTokenizer
import tensorflow as tf
import numpy as np
from typing import List, Tuple, Dict, Optional, Union, Any
import math
from dataclasses import dataclass
import json
from pathlib import Path
import datetime
import faiss
import gc
from tf_data_pipeline import TFDataPipeline
from response_quality_checker import ResponseQualityChecker
from cross_encoder_reranker import CrossEncoderReranker
from conversation_summarizer import DeviceAwareModel, Summarizer
from gpu_monitor import GPUMemoryMonitor
import absl.logging
from logger_config import config_logger
from tqdm.auto import tqdm
absl.logging.set_verbosity(absl.logging.WARNING)
logger = config_logger(__name__)
@dataclass
class ChatbotConfig:
"""Configuration for the RetrievalChatbot."""
max_context_token_limit: int = 512
embedding_dim: int = 768
encoder_units: int = 256
num_attention_heads: int = 8
dropout_rate: float = 0.2
l2_reg_weight: float = 0.001
learning_rate: float = 0.001
min_text_length: int = 3
max_context_turns: int = 5
warmup_steps: int = 200
pretrained_model: str = 'distilbert-base-uncased'
dtype: str = 'float32'
freeze_embeddings: bool = False
embedding_batch_size: int = 64
search_batch_size: int = 64
max_batch_size: int = 64
neg_samples: int = 3
max_retries: int = 3
def to_dict(self) -> Dict:
"""Convert config to dictionary."""
return {k: (str(v) if isinstance(v, Path) else v)
for k, v in self.__dict__.items()}
@classmethod
def from_dict(cls, config_dict: Dict) -> 'ChatbotConfig':
"""Create config from dictionary."""
return cls(**{k: v for k, v in config_dict.items()
if k in cls.__dataclass_fields__})
class EncoderModel(tf.keras.Model):
"""Dual encoder model with pretrained embeddings."""
def __init__(
self,
config: ChatbotConfig,
name: str = "encoder",
**kwargs
):
super().__init__(name=name, **kwargs)
self.config = config
# Load pretrained model
self.pretrained = TFAutoModel.from_pretrained(config.pretrained_model)
# Freeze layers based on config
self._freeze_layers()
# Pooling layer (Global Average Pooling)
self.pooler = tf.keras.layers.GlobalAveragePooling1D()
# Projection layer
self.projection = tf.keras.layers.Dense(
config.embedding_dim,
activation='tanh',
name="projection"
)
# Dropout and normalization
self.dropout = tf.keras.layers.Dropout(config.dropout_rate)
self.normalize = tf.keras.layers.Lambda(
lambda x: tf.nn.l2_normalize(x, axis=1),
name="l2_normalize"
)
def _freeze_layers(self):
"""Freeze layers of the pretrained model based on configuration."""
if self.config.freeze_embeddings:
self.pretrained.trainable = False
logger.info("All pretrained layers frozen.")
else:
# Freeze only the first 'n' transformer layers
for i, layer in enumerate(self.pretrained.layers):
if isinstance(layer, tf.keras.layers.Layer):
if hasattr(layer, 'trainable'):
# Freeze the first transformer block
if i < 1:
layer.trainable = False
logger.info(f"Layer {i} frozen.")
else:
layer.trainable = True
def call(self, inputs: tf.Tensor, training: bool = False) -> tf.Tensor:
"""Forward pass."""
# Get pretrained embeddings
pretrained_outputs = self.pretrained(inputs, training=training)
x = pretrained_outputs.last_hidden_state # Shape: [batch_size, seq_len, embedding_dim]
# Apply pooling, projection, dropout, and normalization
x = self.pooler(x) # Shape: [batch_size, 768]
x = self.projection(x) # Shape: [batch_size, 768]
x = self.dropout(x, training=training) # Apply dropout
x = self.normalize(x) # Shape: [batch_size, 768]
return x
def get_config(self) -> dict:
"""Return the config of the model."""
config = super().get_config()
config.update({
"config": self.config.to_dict(),
"name": self.name
})
return config
class RetrievalChatbot(DeviceAwareModel):
"""Retrieval-based chatbot using pretrained embeddings and FAISS for similarity search."""
def __init__(
self,
config: ChatbotConfig,
dialogues: List[dict] = [],
device: str = None,
strategy=None,
reranker: Optional[CrossEncoderReranker] = None,
summarizer: Optional[Summarizer] = None,
mode: str = 'preparation'
):
super().__init__()
self.config = config
self.strategy = strategy
self.device = device or self._setup_default_device()
self.mode = mode.lower()
# Initialize reranker, summarizer, tokenizer, and memory monitor
self.reranker = reranker or self._initialize_reranker()
self.summarizer = summarizer or self._initialize_summarizer()
self.tokenizer = self._initialize_tokenizer()
self.memory_monitor = GPUMemoryMonitor()
# # Initialize models
# self.min_batch_size = 8
# self.max_batch_size = 128
# self.current_batch_size = 32
# Initialize training history
self.history = {
"train_loss": [],
"val_loss": [],
"train_metrics": {},
"val_metrics": {}
}
# Collect unique responses from dialogues
if self.mode == 'preparation':
# Collect unique responses from dialogues only in preparation mode
self.response_pool, self.unique_responses = self._collect_responses(dialogues)
else:
# In training mode, assume response_pool is handled via TFRecord
self.response_pool = []
self.unique_responses = []
def _setup_default_device(self) -> str:
"""Set up default device if none is provided."""
if tf.config.list_physical_devices('GPU'):
return 'GPU'
else:
return 'CPU'
def _initialize_reranker(self) -> CrossEncoderReranker:
"""Initialize the CrossEncoderReranker."""
logger.info("Initializing default CrossEncoderReranker...")
return CrossEncoderReranker(model_name="cross-encoder/ms-marco-MiniLM-L-12-v2")
def _initialize_summarizer(self) -> Summarizer:
"""Initialize the Summarizer."""
logger.info("Initializing default Summarizer...")
return Summarizer(device=self.device)
def _initialize_tokenizer(self) -> AutoTokenizer:
"""Initialize the tokenizer and add special tokens."""
logger.info("Initializing tokenizer and adding special tokens...")
tokenizer = AutoTokenizer.from_pretrained(self.config.pretrained_model)
special_tokens = {
"user": "<USER>",
"assistant": "<ASSISTANT>",
"context": "<CONTEXT>",
"sep": "<SEP>"
}
tokenizer.add_special_tokens(
{'additional_special_tokens': list(special_tokens.values())}
)
return tokenizer
def _collect_responses(self, dialogues: List[dict]) -> Tuple[List[str], List[str]]:
"""
Collect unique responses from dialogues.
Returns:
response_pool: List of all possible responses.
unique_responses: List of unique responses.
"""
logger.info("Collecting unique responses from dialogues...")
responses = set()
for dialogue in dialogues:
turns = dialogue.get('turns', [])
for turn in turns:
if turn.get('speaker') == 'assistant' and 'text' in turn:
response = turn['text'].strip()
if len(response) >= self.config.min_text_length:
responses.add(response)
response_pool = list(responses)
unique_responses = list(responses) # Assuming uniqueness
logger.info(f"Collected {len(response_pool)} unique responses.")
return response_pool, unique_responses
def build_models(self):
"""Initialize the shared encoder and FAISS index."""
logger.info("Building encoder model...")
tf.keras.backend.clear_session()
# Shared encoder for both queries and responses
self.encoder = EncoderModel(
self.config,
name="shared_encoder",
)
# Resize token embeddings after adding special tokens
new_vocab_size = len(self.tokenizer)
self.encoder.pretrained.resize_token_embeddings(new_vocab_size)
logger.info(f"Token embeddings resized to: {new_vocab_size}")
if self.mode == 'preparation':
# Initialize FAISS index only in preparation mode
self._initialize_faiss()
# Compute and index embeddings
self._compute_and_index_embeddings()
else:
# In training mode, skip FAISS indexing from dialogues
logger.info("Training mode: Skipping FAISS index initialization from dialogues.")
# Retrieve embedding dimension from encoder
embedding_dim = self.config.embedding_dim
vocab_size = len(self.tokenizer)
logger.info(f"Encoder Embedding Dimension: {embedding_dim}")
logger.info(f"Encoder Embedding Vocabulary Size: {vocab_size}")
if vocab_size >= embedding_dim:
logger.info("Encoder model built and embeddings resized successfully.")
else:
logger.error("Vocabulary size is less than embedding dimension.")
raise ValueError("Vocabulary size is less than embedding dimension.")
def _adjust_batch_size(self) -> None:
"""Dynamically adjust batch size based on GPU memory usage."""
if self.memory_monitor.should_reduce_batch_size():
new_size = max(self.min_batch_size, self.current_batch_size // 2)
if new_size != self.current_batch_size:
logger.info(f"Reducing batch size to {new_size} due to high memory usage")
self.current_batch_size = new_size
gc.collect()
if tf.config.list_physical_devices('GPU'):
tf.keras.backend.clear_session()
elif self.memory_monitor.can_increase_batch_size():
new_size = min(self.max_batch_size, self.current_batch_size * 2)
if new_size != self.current_batch_size:
logger.info(f"Increasing batch size to {new_size}")
self.current_batch_size = new_size
def _initialize_faiss(self):
"""Initialize FAISS with safe GPU handling and memory monitoring."""
logger.info("Initializing FAISS index...")
# Detect if we have GPU-enabled FAISS
self.faiss_gpu = False
self.gpu_resources = []
try:
if hasattr(faiss, 'get_num_gpus'):
ngpus = faiss.get_num_gpus()
if ngpus > 0:
# Configure GPU resources with memory limit
for i in range(ngpus):
res = faiss.StandardGpuResources()
# Set temp memory to 1/4 of total memory to avoid OOM
if self.memory_monitor.has_gpu:
stats = self.memory_monitor.get_memory_stats()
if stats:
temp_memory = int(stats.total * 0.25) # 25% of total memory
res.setTempMemory(temp_memory)
self.gpu_resources.append(res)
self.faiss_gpu = True
logger.info(f"FAISS GPU resources initialized on {ngpus} GPUs")
except Exception as e:
logger.warning(f"Using CPU due to GPU initialization error: {e}")
try:
# Create appropriate index based on dataset size
if len(self.unique_responses) < 1000:
logger.info("Small dataset detected, using simple FlatIP index")
self.index = faiss.IndexFlatIP(self.config.embedding_dim)
else:
# For larger datasets, consider using more efficient indices like IVF
self.index = faiss.IndexFlatIP(self.config.embedding_dim)
# Move to GPU(s) if available and needed
if self.faiss_gpu and self.gpu_resources:
try:
if len(self.gpu_resources) > 1:
self.index = faiss.index_cpu_to_gpus_list(self.index, self.gpu_resources)
logger.info("FAISS index distributed across multiple GPUs")
else:
self.index = faiss.index_cpu_to_gpu(self.gpu_resources[0], 0, self.index)
logger.info("FAISS index moved to single GPU")
except Exception as e:
logger.warning(f"Failed to move index to GPU: {e}. Falling back to CPU")
self.faiss_gpu = False
except Exception as e:
logger.error(f"Error initializing FAISS: {e}")
raise
def encode_responses(
self,
responses: List[str],
batch_size: int = 64
) -> tf.Tensor:
"""
Encodes responses with more conservative memory management.
"""
if not responses:
logger.info("No responses to encode. Returning empty tensor.")
return tf.constant([], dtype=tf.float32)
all_embeddings = []
self.current_batch_size = batch_size
if self.memory_monitor.has_gpu:
batch_size = 128
total_processed = 0
with tqdm(total=len(responses), desc="Encoding responses") as pbar:
while total_processed < len(responses):
# Monitor memory and adjust batch size
if self.memory_monitor.has_gpu:
gpu_usage = self.memory_monitor.get_memory_usage()
if gpu_usage > 0.8: # Over 80% usage
self.current_batch_size = max(128, self.current_batch_size // 2)
logger.info(f"High GPU memory usage ({gpu_usage:.1%}), reducing batch size to {self.current_batch_size}")
gc.collect()
tf.keras.backend.clear_session()
# Get batch
end_idx = min(total_processed + self.current_batch_size, len(responses))
batch_texts = responses[total_processed:end_idx]
try:
# Tokenize
encodings = self.tokenizer(
batch_texts,
padding='max_length',
truncation=True,
max_length=self.config.max_context_token_limit,
return_tensors='tf'
)
# Encode
embeddings_batch = self.encoder(encodings['input_ids'], training=False)
# Cast to float32
if embeddings_batch.dtype != tf.float32:
embeddings_batch = tf.cast(embeddings_batch, tf.float32)
# Store
all_embeddings.append(embeddings_batch)
# Update progress
batch_processed = len(batch_texts)
total_processed += batch_processed
# Update progress bar
if self.memory_monitor.has_gpu:
gpu_usage = self.memory_monitor.get_memory_usage()
pbar.set_postfix({
'GPU mem': f'{gpu_usage:.1%}',
'batch_size': self.current_batch_size
})
pbar.update(batch_processed)
# Memory cleanup every 1000 samples
if total_processed % 1000 == 0:
gc.collect()
if tf.config.list_physical_devices('GPU'):
tf.keras.backend.clear_session()
except tf.errors.ResourceExhaustedError:
logger.warning("GPU memory exhausted during encoding, reducing batch size")
self.current_batch_size = max(8, self.current_batch_size // 2)
continue
except Exception as e:
logger.error(f"Error during encoding: {str(e)}")
raise
# Concatenate results
if not all_embeddings:
logger.info("No embeddings were encoded. Returning empty tensor.")
return tf.constant([], dtype=tf.float32)
if len(all_embeddings) == 1:
final_embeddings = all_embeddings[0]
else:
final_embeddings = tf.concat(all_embeddings, axis=0)
return final_embeddings
def _train_faiss_index(self, response_embeddings: np.ndarray) -> None:
"""Train FAISS index with better memory management and robust fallback mechanisms."""
if self.index.is_trained:
logger.info("Index already trained, skipping training phase")
return
logger.info("Starting FAISS index training...")
try:
# First attempt: Try training with smaller subset
subset_size = min(5000, len(response_embeddings)) # Reduced from 10000
logger.info(f"Using {subset_size} samples for initial training attempt")
subset_idx = np.random.choice(len(response_embeddings), subset_size, replace=False)
training_embeddings = response_embeddings[subset_idx].copy() # Make a copy
# Ensure contiguous memory layout
training_embeddings = np.ascontiguousarray(training_embeddings)
# Force cleanup before training
gc.collect()
if tf.config.list_physical_devices('GPU'):
tf.keras.backend.clear_session()
# Verify data properties
logger.info(f"FAISS training data shape: {training_embeddings.shape}")
logger.info(f"FAISS training data dtype: {training_embeddings.dtype}")
logger.info("Starting initial training attempt...")
self.index.train(training_embeddings)
logger.info("Training completed successfully")
except (RuntimeError, Exception) as e:
logger.warning(f"Initial training attempt failed: {str(e)}")
logger.info("Attempting fallback strategy...")
try:
# Move to CPU for more stable training
if self.faiss_gpu:
logger.info("Moving index to CPU for fallback training")
cpu_index = faiss.index_gpu_to_cpu(self.index)
else:
cpu_index = self.index
# Create simpler index type if needed
if isinstance(cpu_index, faiss.IndexIVFFlat):
logger.info("Creating simpler FlatL2 index for fallback")
cpu_index = faiss.IndexFlatL2(self.config.embedding_dim)
# Use even smaller subset for CPU training
subset_size = min(2000, len(response_embeddings))
subset_idx = np.random.choice(len(response_embeddings), subset_size, replace=False)
fallback_embeddings = response_embeddings[subset_idx].copy()
# Ensure data is properly formatted
if not fallback_embeddings.flags['C_CONTIGUOUS']:
fallback_embeddings = np.ascontiguousarray(fallback_embeddings)
if fallback_embeddings.dtype != np.float32:
fallback_embeddings = fallback_embeddings.astype(np.float32)
# Train on CPU
logger.info("Training fallback index on CPU...")
cpu_index.train(fallback_embeddings)
# Move back to GPU if needed
if self.faiss_gpu:
logger.info("Moving trained index back to GPU...")
if len(self.gpu_resources) > 1:
self.index = faiss.index_cpu_to_gpus_list(cpu_index, self.gpu_resources)
else:
self.index = faiss.index_cpu_to_gpu(self.gpu_resources[0], 0, cpu_index)
else:
self.index = cpu_index
logger.info("Fallback training completed successfully")
except Exception as e2:
logger.error(f"Fallback training also failed: {str(e2)}")
logger.warning("Creating basic brute-force index as last resort")
try:
# Create basic brute-force index as last resort
dim = response_embeddings.shape[1]
basic_index = faiss.IndexFlatL2(dim)
if self.faiss_gpu:
if len(self.gpu_resources) > 1:
self.index = faiss.index_cpu_to_gpus_list(basic_index, self.gpu_resources)
else:
self.index = faiss.index_cpu_to_gpu(self.gpu_resources[0], 0, basic_index)
else:
self.index = basic_index
logger.info("Basic index created as fallback")
except Exception as e3:
logger.error(f"All training attempts failed: {str(e3)}")
raise RuntimeError("Unable to create working FAISS index")
def _add_vectors_to_index(self, response_embeddings: np.ndarray) -> None:
"""Add vectors to FAISS index with enhanced memory management."""
logger.info("Starting vector addition process...")
# Even smaller batches
initial_batch_size = 128
min_batch_size = 32
max_batch_size = 1024
total_added = 0
retry_count = 0
max_retries = 5
while total_added < len(response_embeddings):
try:
# Monitor memory
if self.memory_monitor.has_gpu:
gpu_usage = self.memory_monitor.get_memory_usage()
#logger.info(f"GPU memory usage before batch: {gpu_usage:.1%}")
# Force cleanup if memory usage is high
if gpu_usage > 0.7: # Lower threshold to 70%
logger.info("High memory usage detected, forcing cleanup")
gc.collect()
tf.keras.backend.clear_session()
# Get batch
end_idx = min(total_added + initial_batch_size, len(response_embeddings))
batch = response_embeddings[total_added:end_idx]
# Add batch
self.index.add(batch)
# Update progress
batch_size = len(batch)
total_added += batch_size
# Memory cleanup every few batches
if total_added % (initial_batch_size * 5) == 0:
gc.collect()
if tf.config.list_physical_devices('GPU'):
tf.keras.backend.clear_session()
# Gradually increase batch size
if initial_batch_size < max_batch_size:
initial_batch_size = min(initial_batch_size + 25, max_batch_size)
except Exception as e:
logger.warning(f"Error adding batch: {str(e)}")
retry_count += 1
if retry_count > max_retries:
logger.error("Max retries exceeded.")
raise
# Reduce batch size
initial_batch_size = max(min_batch_size, initial_batch_size // 2)
logger.info(f"Reducing batch size to {initial_batch_size} and retrying...")
# Cleanup
gc.collect()
if tf.config.list_physical_devices('GPU'):
tf.keras.backend.clear_session()
time.sleep(1) # Brief pause before retry
logger.info(f"Successfully added all {total_added} vectors to index")
def _add_vectors_cpu_fallback(self, remaining_embeddings: np.ndarray, already_added: int = 0) -> None:
"""CPU fallback with extra safeguards and progress tracking."""
logger.info(f"CPU Fallback: Adding {len(remaining_embeddings)} remaining vectors...")
try:
# Move index to CPU
if self.faiss_gpu:
logger.info("Moving index to CPU...")
cpu_index = faiss.index_gpu_to_cpu(self.index)
else:
cpu_index = self.index
# Add remaining vectors on CPU with very small batches
batch_size = 128
total_added = already_added
for i in range(0, len(remaining_embeddings), batch_size):
end_idx = min(i + batch_size, len(remaining_embeddings))
batch = remaining_embeddings[i:end_idx]
# Add batch
cpu_index.add(batch)
# Update progress
total_added += len(batch)
if i % (batch_size * 10) == 0:
logger.info(f"Added {total_added} vectors total "
f"({i}/{len(remaining_embeddings)} in current phase)")
# Periodic cleanup
if i % (batch_size * 20) == 0:
gc.collect()
# Move back to GPU if needed
if self.faiss_gpu:
logger.info("Moving index back to GPU...")
if len(self.gpu_resources) > 1:
self.index = faiss.index_cpu_to_gpus_list(cpu_index, self.gpu_resources)
else:
self.index = faiss.index_cpu_to_gpu(self.gpu_resources[0], 0, cpu_index)
else:
self.index = cpu_index
logger.info("CPU fallback completed successfully")
except Exception as e:
logger.error(f"Error during CPU fallback: {str(e)}")
raise
def _compute_and_index_embeddings(self):
"""Compute embeddings and build FAISS index with simpler handling."""
logger.info("Computing embeddings and indexing with FAISS...")
try:
# Encode responses with memory monitoring
logger.info("Encoding unique responses")
response_embeddings = self.encode_responses(self.unique_responses)
response_embeddings = response_embeddings.numpy()
# Memory cleanup after encoding
gc.collect()
if tf.config.list_physical_devices('GPU'):
tf.keras.backend.clear_session()
# Ensure float32 and memory contiguous
response_embeddings = response_embeddings.astype('float32')
response_embeddings = np.ascontiguousarray(response_embeddings)
# Log memory state before normalization
if self.memory_monitor.has_gpu:
stats = self.memory_monitor.get_memory_stats()
if stats:
logger.info(f"GPU memory before normalization: {stats.used/1e9:.2f}GB used")
# Normalize embeddings
logger.info("Normalizing embeddings with FAISS")
faiss.normalize_L2(response_embeddings)
# Create and initialize simple FlatIP index
dim = response_embeddings.shape[1]
if self.faiss_gpu:
cpu_index = faiss.IndexFlatIP(dim)
if len(self.gpu_resources) > 1:
self.index = faiss.index_cpu_to_gpus_list(cpu_index, self.gpu_resources)
else:
self.index = faiss.index_cpu_to_gpu(self.gpu_resources[0], 0, cpu_index)
else:
self.index = faiss.IndexFlatIP(dim)
# Add vectors to index
self._add_vectors_to_index(response_embeddings)
# Store responses and embeddings
self.response_pool = self.unique_responses
self.response_embeddings = response_embeddings
# Final memory cleanup
gc.collect()
if tf.config.list_physical_devices('GPU'):
tf.keras.backend.clear_session()
# Log final state
logger.info(f"Successfully indexed {self.index.ntotal} responses")
if self.memory_monitor.has_gpu:
stats = self.memory_monitor.get_memory_stats()
if stats:
logger.info(f"Final GPU memory usage: {stats.used/1e9:.2f}GB used")
logger.info("Indexing completed successfully")
except Exception as e:
logger.error(f"Error during indexing: {e}")
# Ensure cleanup even on error
gc.collect()
if tf.config.list_physical_devices('GPU'):
tf.keras.backend.clear_session()
raise
def verify_faiss_index(self):
"""Verify that FAISS index matches the response pool, if index exists."""
if not hasattr(self, 'index') or self.index is None:
logger.info("FAISS index not initialized. Skipping verification.")
return
indexed_size = self.index.ntotal
pool_size = len(self.response_pool)
logger.info(f"FAISS index size: {indexed_size}")
logger.info(f"Response pool size: {pool_size}")
if indexed_size != pool_size:
logger.warning("Mismatch between FAISS index size and response pool size.")
else:
logger.info("FAISS index correctly matches the response pool.")
def encode_query(self, query: str, context: Optional[List[Tuple[str, str]]] = None) -> tf.Tensor:
"""Encode a query with optional conversation context."""
# Prepare query with context
if context:
context_str = ' '.join([
f"{self.special_tokens['user']} {q} "
f"{self.special_tokens['assistant']} {r}"
for q, r in context[-self.config.max_context_turns:]
])
query = f"{context_str} {self.special_tokens['user']} {query}"
else:
query = f"{self.special_tokens['user']} {query}"
# Tokenize and encode
encodings = self.tokenizer(
[query],
padding='max_length',
truncation=True,
max_length=self.config.max_context_token_limit,
return_tensors='tf'
)
input_ids = encodings['input_ids']
# Verify token IDs
max_id = tf.reduce_max(input_ids).numpy()
new_vocab_size = len(self.tokenizer)
if max_id >= new_vocab_size:
logger.error(f"Token ID {max_id} exceeds the vocabulary size {new_vocab_size}.")
raise ValueError("Token ID exceeds vocabulary size.")
# Get embeddings from the shared encoder
return self.encoder(input_ids, training=False)
def retrieve_responses_cross_encoder(
self,
query: str,
top_k: int,
reranker: Optional[CrossEncoderReranker] = None,
summarizer: Optional[Summarizer] = None,
summarize_threshold: int = 512 # Summarize over 512 tokens
) -> List[Tuple[str, float]]:
"""
Retrieve top-k from FAISS, then re-rank them with a cross-encoder.
Optionally summarize the user query if it's too long.
"""
if reranker is None:
reranker = self.reranker
if summarizer is None:
summarizer = self.summarizer
# Optional summarization
if summarizer and len(query.split()) > summarize_threshold:
logger.info(f"Query is long. Summarizing before cross-encoder. Original length: {len(query.split())}")
query = summarizer.summarize_text(query)
logger.info(f"Summarized query: {query}")
# 2) Dense retrieval
dense_topk = self.retrieve_responses_faiss(query, top_k=top_k) # [(resp, dense_score), ...]
if not dense_topk:
return []
# 3) Cross-encoder rerank
candidate_texts = [pair[0] for pair in dense_topk]
cross_scores = reranker.rerank(query, candidate_texts, max_length=256)
# Combine
combined = [(text, score) for (text, _), score in zip(dense_topk, cross_scores)]
# Sort descending by cross-encoder score
combined.sort(key=lambda x: x[1], reverse=True)
return combined
def retrieve_responses_faiss(self, query: str, top_k: int = 5) -> List[Tuple[str, float]]:
"""Retrieve top-k responses using FAISS."""
if not hasattr(self, 'index') or self.index is None:
logger.warning("FAISS index not initialized. Cannot retrieve responses.")
return []
# Encode the query
q_emb = self.encode_query(query) # Shape: [1, embedding_dim]
q_emb_np = q_emb.numpy().astype('float32') # Ensure type match
# Normalize the query embedding for cosine similarity
faiss.normalize_L2(q_emb_np)
# Search the FAISS index
distances, indices = self.index.search(q_emb_np, top_k)
# Map indices to responses and distances to similarities
top_responses = []
for i, idx in enumerate(indices[0]):
if idx < len(self.response_pool):
top_responses.append((self.response_pool[idx], float(distances[0][i])))
else:
logger.warning(f"FAISS returned invalid index {idx}. Skipping.")
return top_responses
def save_models(self, save_dir: Union[str, Path]):
"""Save models and configuration."""
save_dir = Path(save_dir)
save_dir.mkdir(parents=True, exist_ok=True)
# Save config
with open(save_dir / "config.json", "w") as f:
json.dump(self.config.to_dict(), f, indent=2)
# Save models
self.encoder.pretrained.save_pretrained(save_dir / "shared_encoder")
# Save tokenizer
self.tokenizer.save_pretrained(save_dir / "tokenizer")
logger.info(f"Models and tokenizer saved to {save_dir}.")
@classmethod
def load_models(cls, load_dir: Union[str, Path]) -> 'RetrievalChatbot':
"""Load saved models and configuration."""
load_dir = Path(load_dir)
# Load config
with open(load_dir / "config.json", "r") as f:
config = ChatbotConfig.from_dict(json.load(f))
# Initialize chatbot
chatbot = cls(config)
# Load models
chatbot.encoder.pretrained = TFAutoModel.from_pretrained(
load_dir / "shared_encoder",
config=config
)
# Load tokenizer
chatbot.tokenizer = AutoTokenizer.from_pretrained(load_dir / "tokenizer")
logger.info(f"Models and tokenizer loaded from {load_dir}.")
return chatbot
def train_streaming(
self,
tfrecord_file_path: str,
epochs: int = 20,
batch_size: int = 16,
validation_split: float = 0.2,
checkpoint_dir: str = "checkpoints/",
use_lr_schedule: bool = True,
peak_lr: float = 2e-5,
warmup_steps_ratio: float = 0.1,
early_stopping_patience: int = 3,
min_delta: float = 1e-4,
) -> None:
"""Training using a pre-prepared TFRecord dataset."""
logger.info("Starting training with pre-prepared TFRecord dataset...")
def parse_tfrecord_fn(example_proto, max_length, neg_samples):
"""
Parses a single TFRecord example.
Args:
example_proto: A serialized TFRecord example.
max_length: The maximum sequence length for tokenization.
neg_samples: The number of hard negatives per query.
Returns:
A tuple of (query_ids, positive_ids, negative_ids).
"""
feature_description = {
'query_ids': tf.io.FixedLenFeature([max_length], tf.int64),
'positive_ids': tf.io.FixedLenFeature([max_length], tf.int64),
'negative_ids': tf.io.FixedLenFeature([neg_samples * max_length], tf.int64),
}
parsed_features = tf.io.parse_single_example(example_proto, feature_description)
query_ids = tf.cast(parsed_features['query_ids'], tf.int32)
positive_ids = tf.cast(parsed_features['positive_ids'], tf.int32)
negative_ids = tf.cast(parsed_features['negative_ids'], tf.int32)
negative_ids = tf.reshape(negative_ids, [neg_samples, max_length])
return query_ids, positive_ids, negative_ids
# Calculate total steps by counting the number of records in the TFRecord
raw_dataset = tf.data.TFRecordDataset(tfrecord_file_path)
total_pairs = sum(1 for _ in raw_dataset)
logger.info(f"Total pairs in TFRecord: {total_pairs}")
train_size = int(total_pairs * (1 - validation_split))
val_size = total_pairs - train_size
steps_per_epoch = math.ceil(train_size / batch_size)
val_steps = math.ceil(val_size / batch_size)
total_steps = steps_per_epoch * epochs
logger.info(f"Training pairs: {train_size}")
logger.info(f"Validation pairs: {val_size}")
logger.info(f"Steps per epoch: {steps_per_epoch}")
logger.info(f"Validation steps: {val_steps}")
logger.info(f"Total steps: {total_steps}")
# Set up optimizer with learning rate schedule
if use_lr_schedule:
warmup_steps = int(total_steps * warmup_steps_ratio)
lr_schedule = self._get_lr_schedule(
total_steps=total_steps,
peak_lr=peak_lr,
warmup_steps=warmup_steps
)
self.optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
logger.info("Using custom learning rate schedule.")
else:
self.optimizer = tf.keras.optimizers.Adam(learning_rate=peak_lr)
logger.info("Using fixed learning rate.")
# Initialize checkpoint manager
checkpoint = tf.train.Checkpoint(optimizer=self.optimizer, model=self.encoder)
manager = tf.train.CheckpointManager(checkpoint, checkpoint_dir, max_to_keep=3)
# Setup TensorBoard
log_dir = Path(checkpoint_dir) / "tensorboard_logs"
log_dir.mkdir(parents=True, exist_ok=True)
current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
train_log_dir = str(log_dir / f"train_{current_time}")
val_log_dir = str(log_dir / f"val_{current_time}")
train_summary_writer = tf.summary.create_file_writer(train_log_dir)
val_summary_writer = tf.summary.create_file_writer(val_log_dir)
logger.info(f"TensorBoard logs will be saved in {log_dir}")
# Define the parsing function with the appropriate max_length and neg_samples
parse_fn = lambda x: parse_tfrecord_fn(x, self.config.max_context_token_limit, self.config.neg_samples)
# Create the full dataset
dataset = tf.data.TFRecordDataset(tfrecord_file_path)
dataset = dataset.map(parse_fn, num_parallel_calls=tf.data.AUTOTUNE)
dataset = dataset.shuffle(buffer_size=10000) # Adjust buffer size as needed
dataset = dataset.batch(batch_size, drop_remainder=True)
dataset = dataset.prefetch(tf.data.AUTOTUNE)
# Split into training and validation
train_dataset = dataset.take(train_size)
val_dataset = dataset.skip(train_size).take(val_size)
# Training loop
best_val_loss = float("inf")
epochs_no_improve = 0
for epoch in range(1, epochs + 1):
# --- Training Phase ---
epoch_loss_avg = tf.keras.metrics.Mean()
batches_processed = 0
try:
train_pbar = tqdm(total=steps_per_epoch, desc=f"Training Epoch {epoch}", unit="batch")
is_tqdm_train = True
except ImportError:
train_pbar = None
is_tqdm_train = False
logger.info("Training progress bar disabled")
for q_batch, p_batch, n_batch in train_dataset:
loss = self.train_step(q_batch, p_batch, n_batch)
epoch_loss_avg(loss)
batches_processed += 1
# Log to TensorBoard
with train_summary_writer.as_default():
tf.summary.scalar("loss", loss, step=(epoch - 1) * steps_per_epoch + batches_processed)
# Update progress bar
if use_lr_schedule:
current_lr = float(lr_schedule(self.optimizer.iterations))
else:
current_lr = float(self.optimizer.learning_rate.numpy())
if is_tqdm_train:
train_pbar.update(1)
train_pbar.set_postfix({
"loss": f"{loss.numpy():.4f}",
"lr": f"{current_lr:.2e}",
"batches": f"{batches_processed}/{steps_per_epoch}"
})
# Memory cleanup
gc.collect()
if batches_processed >= steps_per_epoch:
break
if is_tqdm_train and train_pbar:
train_pbar.close()
# --- Validation Phase ---
val_loss_avg = tf.keras.metrics.Mean()
val_batches_processed = 0
try:
val_pbar = tqdm(total=val_steps, desc="Validation", unit="batch")
is_tqdm_val = True
except ImportError:
val_pbar = None
is_tqdm_val = False
logger.info("Validation progress bar disabled")
for q_batch, p_batch, n_batch in val_dataset:
val_loss = self.validation_step(q_batch, p_batch, n_batch)
val_loss_avg(val_loss)
val_batches_processed += 1
if is_tqdm_val:
val_pbar.update(1)
val_pbar.set_postfix({
"val_loss": f"{val_loss.numpy():.4f}",
"batches": f"{val_batches_processed}/{val_steps}"
})
# Memory cleanup
gc.collect()
if val_batches_processed >= val_steps:
break
if is_tqdm_val and val_pbar:
val_pbar.close()
# End of epoch: compute final epoch stats, log, and save checkpoint
train_loss = epoch_loss_avg.result().numpy()
val_loss = val_loss_avg.result().numpy()
logger.info(f"Epoch {epoch} Complete: Train Loss={train_loss:.4f}, Val Loss={val_loss:.4f}")
# Log epoch metrics
with train_summary_writer.as_default():
tf.summary.scalar("epoch_loss", train_loss, step=epoch)
with val_summary_writer.as_default():
tf.summary.scalar("val_loss", val_loss, step=epoch)
# Save checkpoint
manager.save()
# Store metrics in history
self.history['train_loss'].append(train_loss)
self.history['val_loss'].append(val_loss)
if use_lr_schedule:
current_lr = float(lr_schedule(self.optimizer.iterations))
else:
current_lr = float(self.optimizer.learning_rate.numpy())
self.history.setdefault('learning_rate', []).append(current_lr)
# Early stopping logic
if val_loss < best_val_loss - min_delta:
best_val_loss = val_loss
epochs_no_improve = 0
logger.info(f"Validation loss improved to {val_loss:.4f}. Reset patience.")
else:
epochs_no_improve += 1
logger.info(f"No improvement this epoch. Patience: {epochs_no_improve}/{early_stopping_patience}")
if epochs_no_improve >= early_stopping_patience:
logger.info("Early stopping triggered.")
break
logger.info("Training completed!")
@tf.function
def train_step(
self,
q_batch: tf.Tensor,
p_batch: tf.Tensor,
n_batch: tf.Tensor
) -> tf.Tensor:
"""
Single training step using queries, positives, and hard negatives.
"""
with tf.GradientTape() as tape:
# Encode queries
q_enc = self.encoder(q_batch, training=True) # [batch_size, embed_dim]
# Encode positives
p_enc = self.encoder(p_batch, training=True) # [batch_size, embed_dim]
# Encode negatives
# n_batch: [batch_size, neg_samples, max_length]
shape = tf.shape(n_batch)
bs = shape[0]
neg_samples = shape[1]
# Flatten negatives to feed them in one pass:
# => [batch_size * neg_samples, max_length]
n_batch_flat = tf.reshape(n_batch, [bs * neg_samples, shape[2]])
n_enc_flat = self.encoder(n_batch_flat, training=True) # [bs*neg_samples, embed_dim]
# Reshape back => [batch_size, neg_samples, embed_dim]
n_enc = tf.reshape(n_enc_flat, [bs, neg_samples, -1])
# Combine the positive embedding and negative embeddings along dim=1
# => shape [batch_size, 1 + neg_samples, embed_dim]
# The first column is the positive; subsequent columns are negatives
combined_p_n = tf.concat(
[tf.expand_dims(p_enc, axis=1), n_enc],
axis=1
) # [bs, (1+neg_samples), embed_dim]
# Now compute scores: dot product of q_enc with each column in combined_p_n
# We'll use `tf.einsum` to handle the batch dimension properly
# dot_products => shape [batch_size, (1+neg_samples)]
dot_products = tf.einsum('bd,bkd->bk', q_enc, combined_p_n)
# The label for each row is 0 (the first column is the correct/positive)
labels = tf.zeros([bs], dtype=tf.int32)
# Cross-entropy over the [batch_size, 1+neg_samples] scores
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels,
logits=dot_products
)
loss = tf.reduce_mean(loss)
# Apply gradients
gradients = tape.gradient(loss, self.encoder.trainable_variables)
self.optimizer.apply_gradients(zip(gradients, self.encoder.trainable_variables))
return loss
@tf.function
def validation_step(
self,
q_batch: tf.Tensor,
p_batch: tf.Tensor,
n_batch: tf.Tensor
) -> tf.Tensor:
"""
Single validation step using queries, positives, and hard negatives.
"""
q_enc = self.encoder(q_batch, training=False)
p_enc = self.encoder(p_batch, training=False)
shape = tf.shape(n_batch)
bs = shape[0]
neg_samples = shape[1]
n_batch_flat = tf.reshape(n_batch, [bs * neg_samples, shape[2]])
n_enc_flat = self.encoder(n_batch_flat, training=False)
n_enc = tf.reshape(n_enc_flat, [bs, neg_samples, -1])
combined_p_n = tf.concat(
[tf.expand_dims(p_enc, axis=1), n_enc],
axis=1
)
dot_products = tf.einsum('bd,bkd->bk', q_enc, combined_p_n)
labels = tf.zeros([bs], dtype=tf.int32)
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels,
logits=dot_products
)
loss = tf.reduce_mean(loss)
return loss
# def train_streaming(
# self,
# dialogues: List[dict],
# epochs: int = 20,
# batch_size: int = 16,
# validation_split: float = 0.2,
# checkpoint_dir: str = "checkpoints/",
# use_lr_schedule: bool = True,
# peak_lr: float = 2e-5,
# warmup_steps_ratio: float = 0.1,
# early_stopping_patience: int = 3,
# min_delta: float = 1e-4,
# neg_samples: int = 1
# ) -> None:
# """Streaming training with tf.data pipeline."""
# logger.info("Starting streaming training pipeline with tf.data...")
# # Initialize TFDataPipeline (replaces StreamingDataPipeline)
# dataset_preparer = TFDataPipeline(
# embedding_batch_size=self.config.embedding_batch_size,
# tokenizer=self.tokenizer,
# encoder=self.encoder,
# index=self.index, # Pass CPU version of FAISS index
# response_pool=self.response_pool,
# max_length=self.config.max_context_token_limit,
# neg_samples=neg_samples
# )
# # Calculate total steps for learning rate schedule
# total_pairs = dataset_preparer.estimate_total_pairs(dialogues)
# train_size = int(total_pairs * (1 - validation_split))
# val_size = int(total_pairs * validation_split)
# steps_per_epoch = int(math.ceil(train_size / batch_size))
# val_steps = int(math.ceil(val_size / batch_size))
# total_steps = steps_per_epoch * epochs
# logger.info(f"Total pairs: {total_pairs}")
# logger.info(f"Training pairs: {train_size}")
# logger.info(f"Validation pairs: {val_size}")
# logger.info(f"Steps per epoch: {steps_per_epoch}")
# logger.info(f"Validation steps: {val_steps}")
# logger.info(f"Total steps: {total_steps}")
# # Set up optimizer with learning rate schedule
# if use_lr_schedule:
# warmup_steps = int(total_steps * warmup_steps_ratio)
# lr_schedule = self._get_lr_schedule(
# total_steps=total_steps,
# peak_lr=peak_lr,
# warmup_steps=warmup_steps
# )
# self.optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
# logger.info("Using custom learning rate schedule.")
# else:
# self.optimizer = tf.keras.optimizers.Adam(learning_rate=peak_lr)
# logger.info("Using fixed learning rate.")
# # Initialize checkpoint manager
# checkpoint = tf.train.Checkpoint(optimizer=self.optimizer, model=self.encoder)
# manager = tf.train.CheckpointManager(checkpoint, checkpoint_dir, max_to_keep=3)
# # Setup TensorBoard
# log_dir = Path(checkpoint_dir) / "tensorboard_logs"
# log_dir.mkdir(parents=True, exist_ok=True)
# current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
# train_log_dir = str(log_dir / f"train_{current_time}")
# val_log_dir = str(log_dir / f"val_{current_time}")
# train_summary_writer = tf.summary.create_file_writer(train_log_dir)
# val_summary_writer = tf.summary.create_file_writer(val_log_dir)
# logger.info(f"TensorBoard logs will be saved in {log_dir}")
# # Create training and validation datasets
# train_dataset = dataset_preparer.get_tf_dataset(dialogues, batch_size).take(train_size)
# val_dataset = dataset_preparer.get_tf_dataset(dialogues, batch_size).skip(train_size).take(val_size)
# # Training loop
# best_val_loss = float("inf")
# epochs_no_improve = 0
# for epoch in range(1, epochs + 1):
# # --- Training Phase ---
# epoch_loss_avg = tf.keras.metrics.Mean()
# batches_processed = 0
# try:
# train_pbar = tqdm(total=steps_per_epoch, desc=f"Training Epoch {epoch}", unit="batch")
# is_tqdm_train = True
# except ImportError:
# train_pbar = None
# is_tqdm_train = False
# logger.info("Training progress bar disabled")
# for q_batch, p_batch, n_batch in train_dataset:
# #p_batch = p_n_batch[:, 0, :] # Extract positive from (positive, negative) pair
# loss = self.train_step(q_batch, p_batch, n_batch)
# epoch_loss_avg(loss)
# batches_processed += 1
# # Log to TensorBoard
# with train_summary_writer.as_default():
# tf.summary.scalar("loss", loss, step=(epoch - 1) * steps_per_epoch + batches_processed)
# # Update progress bar
# if use_lr_schedule:
# current_lr = float(lr_schedule(self.optimizer.iterations))
# else:
# current_lr = float(self.optimizer.learning_rate.numpy())
# if is_tqdm_train:
# train_pbar.update(1)
# train_pbar.set_postfix({
# "loss": f"{loss.numpy():.4f}",
# "lr": f"{current_lr:.2e}",
# "batches": f"{batches_processed}/{steps_per_epoch}"
# })
# # Memory cleanup
# gc.collect()
# if batches_processed >= steps_per_epoch:
# break
# if is_tqdm_train and train_pbar:
# train_pbar.close()
# # --- Validation Phase ---
# val_loss_avg = tf.keras.metrics.Mean()
# val_batches_processed = 0
# try:
# val_pbar = tqdm(total=val_steps, desc="Validation", unit="batch")
# is_tqdm_val = True
# except ImportError:
# val_pbar = None
# is_tqdm_val = False
# logger.info("Validation progress bar disabled")
# for q_batch, p_batch, n_batch in val_dataset:
# #p_batch = p_n_batch[:, 0, :] # Extract positive from (positive, negative) pair
# val_loss = self.validation_step(q_batch, p_batch, n_batch)
# val_loss_avg(val_loss)
# val_batches_processed += 1
# if is_tqdm_val:
# val_pbar.update(1)
# val_pbar.set_postfix({
# "val_loss": f"{val_loss.numpy():.4f}",
# "batches": f"{val_batches_processed}/{val_steps}"
# })
# # Memory cleanup
# gc.collect()
# if val_batches_processed >= val_steps:
# break
# if is_tqdm_val and val_pbar:
# val_pbar.close()
# # End of epoch: compute final epoch stats, log, and save checkpoint
# train_loss = epoch_loss_avg.result().numpy()
# val_loss = val_loss_avg.result().numpy()
# logger.info(f"Epoch {epoch} Complete: Train Loss={train_loss:.4f}, Val Loss={val_loss:.4f}")
# # Log epoch metrics
# with train_summary_writer.as_default():
# tf.summary.scalar("epoch_loss", train_loss, step=epoch)
# with val_summary_writer.as_default():
# tf.summary.scalar("val_loss", val_loss, step=epoch)
# # Save checkpoint
# manager.save()
# # Store metrics in history
# self.history['train_loss'].append(train_loss)
# self.history['val_loss'].append(val_loss)
# if use_lr_schedule:
# current_lr = float(lr_schedule(self.optimizer.iterations))
# else:
# current_lr = float(self.optimizer.learning_rate.numpy())
# self.history.setdefault('learning_rate', []).append(current_lr)
# # Early stopping logic
# if val_loss < best_val_loss - min_delta:
# best_val_loss = val_loss
# epochs_no_improve = 0
# logger.info(f"Validation loss improved to {val_loss:.4f}. Reset patience.")
# else:
# epochs_no_improve += 1
# logger.info(f"No improvement this epoch. Patience: {epochs_no_improve}/{early_stopping_patience}")
# if epochs_no_improve >= early_stopping_patience:
# logger.info("Early stopping triggered.")
# break
# logger.info("Streaming training completed!")
# @tf.function
# def train_step(
# self,
# q_batch: tf.Tensor,
# p_batch: tf.Tensor,
# n_batch: tf.Tensor,
# attention_mask: Optional[tf.Tensor] = None
# ) -> tf.Tensor:
# """
# Single training step that uses queries, positives, and negatives in a
# contrastive/InfoNCE style. The label is always 0 (the positive) vs.
# the negative alternatives.
# """
# with tf.GradientTape() as tape:
# # Encode queries
# q_enc = self.encoder(q_batch, training=True) # [batch_size, embed_dim]
# # Encode positives
# p_enc = self.encoder(p_batch, training=True) # [batch_size, embed_dim]
# # Encode negatives
# # n_batch: [batch_size, neg_samples, max_length]
# shape = tf.shape(n_batch)
# bs = shape[0]
# neg_samples = shape[1]
# # Flatten negatives to feed them in one pass:
# # => [batch_size * neg_samples, max_length]
# n_batch_flat = tf.reshape(n_batch, [bs * neg_samples, shape[2]])
# n_enc_flat = self.encoder(n_batch_flat, training=True) # [bs*neg_samples, embed_dim]
# # Reshape back => [batch_size, neg_samples, embed_dim]
# n_enc = tf.reshape(n_enc_flat, [bs, neg_samples, -1])
# # Combine the positive embedding and negative embeddings along dim=1
# # => shape [batch_size, 1 + neg_samples, embed_dim]
# # The first column is the positive; subsequent columns are negatives
# combined_p_n = tf.concat(
# [tf.expand_dims(p_enc, axis=1), n_enc],
# axis=1
# ) # [bs, (1+neg_samples), embed_dim]
# # Now compute scores: dot product of q_enc with each column in combined_p_n
# # We'll use `tf.einsum` to handle the batch dimension properly
# # dot_products => shape [batch_size, (1+neg_samples)]
# dot_products = tf.einsum('bd,bkd->bk', q_enc, combined_p_n)
# # The label for each row is 0 (the first column is the correct/positive)
# labels = tf.zeros([bs], dtype=tf.int32)
# # Cross-entropy over the [batch_size, 1+neg_samples] scores
# loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
# labels=labels,
# logits=dot_products
# )
# loss = tf.reduce_mean(loss)
# # If there's an attention_mask you want to apply (less common in this scenario),
# # you could do something like:
# if attention_mask is not None:
# loss = loss * attention_mask
# loss = tf.reduce_sum(loss) / tf.reduce_sum(attention_mask)
# # Apply gradients
# gradients = tape.gradient(loss, self.encoder.trainable_variables)
# self.optimizer.apply_gradients(zip(gradients, self.encoder.trainable_variables))
# return loss
# @tf.function
# def validation_step(
# self,
# q_batch: tf.Tensor,
# p_batch: tf.Tensor,
# n_batch: tf.Tensor,
# attention_mask: Optional[tf.Tensor] = None
# ) -> tf.Tensor:
# """
# Single validation step with queries, positives, and negatives.
# Uses the same loss calculation as train_step, but `training=False`.
# """
# q_enc = self.encoder(q_batch, training=False)
# p_enc = self.encoder(p_batch, training=False)
# shape = tf.shape(n_batch)
# bs = shape[0]
# neg_samples = shape[1]
# n_batch_flat = tf.reshape(n_batch, [bs * neg_samples, shape[2]])
# n_enc_flat = self.encoder(n_batch_flat, training=False)
# n_enc = tf.reshape(n_enc_flat, [bs, neg_samples, -1])
# combined_p_n = tf.concat(
# [tf.expand_dims(p_enc, axis=1), n_enc],
# axis=1
# )
# dot_products = tf.einsum('bd,bkd->bk', q_enc, combined_p_n)
# labels = tf.zeros([bs], dtype=tf.int32)
# loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
# labels=labels,
# logits=dot_products
# )
# loss = tf.reduce_mean(loss)
# if attention_mask is not None:
# loss = loss * attention_mask
# loss = tf.reduce_sum(loss) / tf.reduce_sum(attention_mask)
# return loss
def _get_lr_schedule(
self,
total_steps: int,
peak_lr: float,
warmup_steps: int
) -> tf.keras.optimizers.schedules.LearningRateSchedule:
"""Create a custom learning rate schedule with warmup and cosine decay."""
class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
def __init__(
self,
total_steps: int,
peak_lr: float,
warmup_steps: int
):
super().__init__()
self.total_steps = tf.cast(total_steps, tf.float32)
self.peak_lr = tf.cast(peak_lr, tf.float32)
# Adjust warmup_steps to not exceed half of total_steps
adjusted_warmup_steps = min(warmup_steps, max(1, total_steps // 10))
self.warmup_steps = tf.cast(adjusted_warmup_steps, tf.float32)
# Calculate and store constants
self.initial_lr = self.peak_lr * 0.1 # Start at 10% of peak
self.min_lr = self.peak_lr * 0.01 # Minimum 1% of peak
logger.info(f"Learning rate schedule initialized:")
logger.info(f" Initial LR: {float(self.initial_lr):.6f}")
logger.info(f" Peak LR: {float(self.peak_lr):.6f}")
logger.info(f" Min LR: {float(self.min_lr):.6f}")
logger.info(f" Warmup steps: {int(self.warmup_steps)}")
logger.info(f" Total steps: {int(self.total_steps)}")
def __call__(self, step):
step = tf.cast(step, tf.float32)
# Warmup phase
warmup_factor = tf.minimum(1.0, step / self.warmup_steps)
warmup_lr = self.initial_lr + (self.peak_lr - self.initial_lr) * warmup_factor
# Decay phase
decay_steps = tf.maximum(1.0, self.total_steps - self.warmup_steps)
decay_factor = (step - self.warmup_steps) / decay_steps
decay_factor = tf.minimum(tf.maximum(0.0, decay_factor), 1.0) # Clip to [0,1]
cosine_decay = 0.5 * (1.0 + tf.cos(tf.constant(math.pi) * decay_factor))
decay_lr = self.min_lr + (self.peak_lr - self.min_lr) * cosine_decay
# Choose between warmup and decay
final_lr = tf.where(step < self.warmup_steps, warmup_lr, decay_lr)
# Ensure learning rate is valid
final_lr = tf.maximum(self.min_lr, final_lr)
final_lr = tf.where(tf.math.is_finite(final_lr), final_lr, self.min_lr)
return final_lr
def get_config(self):
return {
"total_steps": self.total_steps,
"peak_lr": self.peak_lr,
"warmup_steps": self.warmup_steps,
}
return CustomSchedule(total_steps, peak_lr, warmup_steps)
def _cosine_similarity(self, emb1: np.ndarray, emb2: np.ndarray) -> np.ndarray:
"""Compute cosine similarity between two numpy arrays."""
normalized_emb1 = emb1 / np.linalg.norm(emb1, axis=1, keepdims=True)
normalized_emb2 = emb2 / np.linalg.norm(emb2, axis=1, keepdims=True)
return np.dot(normalized_emb1, normalized_emb2.T)
def chat(
self,
query: str,
conversation_history: Optional[List[Tuple[str, str]]] = None,
quality_checker: Optional['ResponseQualityChecker'] = None,
top_k: int = 5,
) -> Tuple[str, List[Tuple[str, float]], Dict[str, Any]]:
"""
Example chat method that always uses cross-encoder re-ranking
if self.reranker is available.
"""
@self.run_on_device
def get_response(self_arg, query_arg): # Add parameters that match decorator's expectations
# 1) Build conversation context string
conversation_str = self_arg._build_conversation_context(query_arg, conversation_history)
# 2) Retrieve + cross-encoder re-rank
results = self_arg.retrieve_responses_cross_encoder(
query=conversation_str,
top_k=top_k,
reranker=self_arg.reranker,
summarizer=self_arg.summarizer,
summarize_threshold=512
)
# 3) Handle empty or confidence
if not results:
return (
"I'm sorry, but I couldn't find a relevant response.",
[],
{}
)
if quality_checker:
metrics = quality_checker.check_response_quality(query_arg, results)
if not metrics.get('is_confident', False):
return (
"I need more information to provide a good answer. Could you please clarify?",
results,
metrics
)
return results[0][0], results, metrics
return results[0][0], results, {}
return get_response(self, query)
def _build_conversation_context(
self,
query: str,
conversation_history: Optional[List[Tuple[str, str]]]
) -> str:
"""Build conversation context with better memory management."""
if not conversation_history:
return f"{self.special_tokens['user']} {query}"
conversation_parts = []
for user_txt, assistant_txt in conversation_history:
conversation_parts.extend([
f"{self.special_tokens['user']} {user_txt}",
f"{self.special_tokens['assistant']} {assistant_txt}"
])
conversation_parts.append(f"{self.special_tokens['user']} {query}")
return "\n".join(conversation_parts)