csc525_retrieval_based_chatbot / chatbot_model.py
JoeArmani
more structural updates
d7fc7a7
raw
history blame
51.2 kB
import os
import numpy as np
from transformers import TFAutoModel, AutoTokenizer
import tensorflow as tf
from typing import List, Tuple, Dict, Optional, Union, Any
import math
from dataclasses import dataclass
import json
from pathlib import Path
import datetime
import faiss
import gc
import re
from tf_data_pipeline import TFDataPipeline
from response_quality_checker import ResponseQualityChecker
from cross_encoder_reranker import CrossEncoderReranker
from conversation_summarizer import DeviceAwareModel, Summarizer
import absl.logging
from logger_config import config_logger
from tqdm.auto import tqdm
absl.logging.set_verbosity(absl.logging.WARNING)
logger = config_logger(__name__)
@dataclass
class ChatbotConfig:
"""RetrievalChatbot Config"""
max_context_token_limit: int = 512
embedding_dim: int = 768
encoder_units: int = 256
num_attention_heads: int = 8
dropout_rate: float = 0.2
l2_reg_weight: float = 0.001
learning_rate: float = 0.0005
min_text_length: int = 3
max_context_turns: int = 20
warmup_steps: int = 200
pretrained_model: str = 'distilbert-base-uncased'
cross_encoder_model: str = 'cross-encoder/ms-marco-MiniLM-L-12-v2'
summarizer_model: str = 't5-small'
dtype: str = 'float32'
freeze_embeddings: bool = False
embedding_batch_size: int = 64
search_batch_size: int = 64
max_batch_size: int = 64
max_retries: int = 3
def to_dict(self) -> Dict:
"""Convert config to dictionary."""
return {k: (str(v) if isinstance(v, Path) else v)
for k, v in self.__dict__.items()}
@classmethod
def from_dict(cls, config_dict: Dict) -> 'ChatbotConfig':
"""Create config from dictionary."""
return cls(**{k: v for k, v in config_dict.items()
if k in cls.__dataclass_fields__})
class EncoderModel(tf.keras.Model):
"""Dual encoder model with pretrained DistilBERT embeddings."""
def __init__(
self,
config: ChatbotConfig,
name: str = "encoder",
**kwargs
):
super().__init__(name=name, **kwargs)
self.config = config
# Load pretrained model and freeze layers based on config
self.pretrained = TFAutoModel.from_pretrained(config.pretrained_model)
self._freeze_layers()
# Add Global Average Pooling, Projection, Dropout, and Normalization layers
self.pooler = tf.keras.layers.GlobalAveragePooling1D()
self.projection = tf.keras.layers.Dense(
config.embedding_dim,
activation='tanh',
name="projection",
dtype=tf.float32
)
self.dropout = tf.keras.layers.Dropout(config.dropout_rate)
self.normalize = tf.keras.layers.Lambda(
lambda x: tf.nn.l2_normalize(x, axis=1),
name="l2_normalize"
)
def _freeze_layers(self):
"""Freeze n layers of the pretrained model"""
if self.config.freeze_embeddings:
self.pretrained.trainable = False
logger.info("All pretrained layers frozen.")
else:
# Freeze only the first 'n' transformer layers
for i, layer in enumerate(self.pretrained.layers):
if isinstance(layer, tf.keras.layers.Layer):
if hasattr(layer, 'trainable'):
if i < 1:
layer.trainable = False
logger.info(f"Layer {i} frozen.")
else:
layer.trainable = True
logger.info(f"Layer {i} trainable.")
def call(self, inputs: tf.Tensor, training: bool = False) -> tf.Tensor:
"""Forward pass."""
# Get pretrained embeddings
pretrained_outputs = self.pretrained(inputs, training=training)
x = pretrained_outputs.last_hidden_state # Shape: [batch_size, seq_len, embedding_dim]
# Apply pooling, projection, dropout, and normalization
x = self.pooler(x) # Shape: [batch_size, 768]
x = self.projection(x) # Shape: [batch_size, 768]
x = self.dropout(x, training=training)
x = self.normalize(x) # Shape: [batch_size, 768]
return x
def get_config(self) -> dict:
"""Return the model config"""
config = super().get_config()
config.update({
"config": self.config.to_dict(),
"name": self.name
})
return config
class RetrievalChatbot(DeviceAwareModel):
"""
Retrieval-based learning chatbot model.
Uses trained embeddings and FAISS for similarity search.
"""
def __init__(
self,
config: ChatbotConfig,
device: str = None,
strategy=None,
reranker: Optional[CrossEncoderReranker] = None,
summarizer: Optional[Summarizer] = None,
mode: str = 'training'
):
super().__init__()
self.config = config
self.strategy = strategy
self.device = device or self._setup_default_device()
self.mode = mode.lower()
# Initialize reranker, summarizer, tokenizer, and encoder
self.reranker = reranker or self._initialize_reranker()
self.tokenizer = self._initialize_tokenizer()
self.encoder = self._initialize_encoder()
self.summarizer = summarizer or self._initialize_summarizer()
# Initialize data pipeline
logger.info("Initializing TFDataPipeline.")
self.data_pipeline = TFDataPipeline(
config=self.config,
tokenizer=self.tokenizer,
encoder=self.encoder,
response_pool=[],
max_length=self.config.max_context_token_limit,
query_embeddings_cache={},
)
# Collect unique responses from dialogues
if self.mode == 'inference':
logger.info("Mode set to 'inference'. Loading FAISS index and response pool.")
self._load_faiss_index_and_responses()
elif self.mode != 'training':
logger.error(f"Unsupported mode in RetrievalChatbot init: {self.mode}")
raise ValueError(f"Unsupported mode in RetrievalChatbot init: {self.mode}")
# Initialize training history
self.history = {
"train_loss": [],
"val_loss": [],
"train_metrics": {},
"val_metrics": {}
}
def _setup_default_device(self) -> str:
"""Set up default device if none is provided."""
if tf.config.list_physical_devices('GPU'):
return 'GPU'
else:
return 'CPU'
def _initialize_reranker(self) -> CrossEncoderReranker:
"""Initialize the CrossEncoderReranker."""
logger.info("Initializing default CrossEncoderReranker...")
return CrossEncoderReranker(model_name=self.config.cross_encoder_model)
def _initialize_summarizer(self) -> Summarizer:
"""Initialize the Summarizer."""
return Summarizer(
tokenizer=self.tokenizer,
model_name=self.config.summarizer_model,
max_summary_length=self.config.max_context_token_limit // 4,
device=self.device,
max_summary_rounds=2
)
def _initialize_tokenizer(self) -> AutoTokenizer:
"""Initialize the tokenizer and add special tokens."""
logger.info("Initializing tokenizer and adding special tokens...")
tokenizer = AutoTokenizer.from_pretrained(self.config.pretrained_model)
special_tokens = {
"user": "<USER>",
"assistant": "<ASSISTANT>",
"context": "<CONTEXT>",
"sep": "<SEP>"
}
tokenizer.add_special_tokens(
{'additional_special_tokens': list(special_tokens.values())}
)
return tokenizer
def _initialize_encoder(self) -> EncoderModel:
"""Initialize the EncoderModel and resize token embeddings."""
logger.info("Initializing encoder model...")
encoder = EncoderModel(
self.config,
name="shared_encoder",
)
new_vocab_size = len(self.tokenizer)
encoder.pretrained.resize_token_embeddings(new_vocab_size)
logger.info(f"Token embeddings resized to: {new_vocab_size}")
return encoder
def _load_faiss_index_and_responses(self) -> None:
"""Load FAISS index and response pool for inference."""
try:
logger.info(f"Loading FAISS index from {self.data_pipeline.faiss_index_file_path}...")
self.data_pipeline.load_faiss_index(self.data_pipeline.faiss_index_file_path)
logger.info("FAISS index loaded successfully.")
# Load response pool
response_pool_path = self.data_pipeline.faiss_index_file_path.replace('.index', '_responses.json')
if os.path.exists(response_pool_path):
with open(response_pool_path, 'r', encoding='utf-8') as f:
self.data_pipeline.response_pool = json.load(f)
logger.info(f"Loaded {len(self.data_pipeline.response_pool)} responses from {response_pool_path}.")
else:
logger.error(f"Response pool file not found at {response_pool_path}.")
raise FileNotFoundError(f"Response pool file not found at {response_pool_path}.")
# Validate FAISS index and response pool
self.data_pipeline.validate_faiss_index()
logger.info("FAISS index and response pool validated successfully.")
except Exception as e:
logger.error(f"Failed to load FAISS index and response pool: {e}")
raise
@classmethod
def load_model(cls, load_dir: Union[str, Path], mode: str = 'training') -> 'RetrievalChatbot':
"""
Load saved models and configuration.
"""
load_dir = Path(load_dir)
# Load config
with open(load_dir / "config.json", "r") as f:
config = ChatbotConfig.from_dict(json.load(f))
# Initialize chatbot
chatbot = cls(config, mode=mode)
# Load DistilBERT
chatbot.encoder.pretrained = TFAutoModel.from_pretrained(load_dir / "shared_encoder", config=config)
dummy_input = tf.zeros((1, config.max_context_token_limit), dtype=tf.int32)
_ = chatbot.encoder(dummy_input, training=False)
# Load tokenizer
chatbot.tokenizer = AutoTokenizer.from_pretrained(load_dir / "tokenizer")
logger.info(f"Models and tokenizer loaded from {load_dir}")
# Load the custom weights
custom_weights_path = load_dir / "encoder_custom_weights.weights.h5"
if custom_weights_path.exists():
chatbot.encoder.load_weights(str(custom_weights_path))
logger.info("Loaded custom encoder weights for projection/dropout/etc.")
else:
logger.warning(f"No custom encoder weights found at {custom_weights_path}. The top-level projection layer won't have learned parameters.")
# Handle 'inference' mode: load FAISS, etc.
if mode == 'inference':
cls._prepare_model_for_inference(chatbot, load_dir)
return chatbot
@classmethod
def _prepare_model_for_inference(cls, chatbot: 'RetrievalChatbot', load_dir: Path) -> None:
"""Load inference components."""
try:
# Load FAISS index
faiss_path = load_dir / 'faiss_indices/faiss_index_production.index'
if faiss_path.exists():
chatbot.index = faiss.read_index(str(faiss_path))
logger.info("FAISS index loaded successfully")
else:
raise FileNotFoundError(f"FAISS index not found at {faiss_path}")
# Load response pool
response_pool_path = load_dir / 'faiss_indices/faiss_index_production_responses.json'
if response_pool_path.exists():
with open(response_pool_path, 'r') as f:
chatbot.response_pool = json.load(f)
logger.info(f"Loaded {len(chatbot.response_pool)} responses")
else:
raise FileNotFoundError(f"Response pool not found at {response_pool_path}")
# Verify dimensions match
if chatbot.index.d != chatbot.config.embedding_dim:
raise ValueError(
f"FAISS index dimension {chatbot.index.d} doesn't match "
f"model dimension {chatbot.config.embedding_dim}"
)
except Exception as e:
logger.error(f"Error loading inference components: {e}")
raise
def save_models(self, save_dir: Union[str, Path]):
"""Save model and config"""
save_dir = Path(save_dir)
save_dir.mkdir(parents=True, exist_ok=True)
# Save config
with open(save_dir / "config.json", "w") as f:
json.dump(self.config.to_dict(), f, indent=2)
# Save the HF DistilBERT submodule, custom top-level layers, and tokenizer
self.encoder.pretrained.save_pretrained(save_dir / "shared_encoder")
self.encoder.save_weights(save_dir / "encoder_custom_weights.weights.h5")
self.tokenizer.save_pretrained(save_dir / "tokenizer")
logger.info(f"Models and tokenizer saved to {save_dir}.")
def retrieve_responses(
self,
query: str,
top_k: int = 10,
reranker: Optional[CrossEncoderReranker] = None,
summarizer: Optional[Summarizer] = None,
summarize_threshold: int = 512
) -> List[Tuple[str, float]]:
"""
Retrieve top-k responses using FAISS and cross-encoder re-ranking.
Args:
query: The user's input text.
top_k: Number of FAISS results to return
reranker: CrossEncoderReranker for refined scoring
summarizer: Summarizer for long queries
summarize_threshold: Summarize if conversation tokens > threshold.
Returns:
List of (response_text, final_score).
"""
def sigmoid(x: float) -> float:
return 1 / (1 + np.exp(-x))
# Query summarization
if summarizer and len(query.split()) > summarize_threshold:
logger.info(f"Query is long ({len(query.split())} words). Summarizing.")
query = summarizer.summarize_text(query)
logger.info(f"Summarized Query: {query}")
detected_domain = self.detect_domain_from_query(query)
# Retrieve initial candidates from FAISS
initial_k = min(top_k * 10, len(self.data_pipeline.response_pool))
faiss_candidates = self.faiss_search(query, domain=detected_domain, top_k=initial_k)
if not faiss_candidates:
return []
texts = [item[0] for item in faiss_candidates]
if not reranker:
reranker = CrossEncoderReranker(model_name=self.config.cross_encoder_model)
# Re-rank the texts (candidates) from FAISS search using the cross-encoder
ce_logits = reranker.rerank(query, texts, max_length=256)
# Combine scores from FAISS and cross-encoder
final_candidates = []
for (resp_text, faiss_score), logit in zip(faiss_candidates, ce_logits):
ce_prob = sigmoid(logit) # now in range [0...1]
faiss_norm = (faiss_score + 1)/2.0 # now in range [0...1]
combined_score = 0.85 * ce_prob + 0.15 * faiss_norm
length_adjusted_score = self.length_adjust_score(resp_text, combined_score)
final_candidates.append((resp_text, length_adjusted_score))
# Sort descending by combined score
final_candidates.sort(key=lambda x: x[1], reverse=True)
# Return top_k
return final_candidates[:top_k]
def extract_keywords(self, query: str) -> List[str]:
"""
Return any domain keywords present in the query (lowercased).
"""
domain_keywords = {
'restaurant': ['restaurant', 'dining', 'food', 'dine', 'reservation', 'table', 'menu', 'cuisine', 'eat', 'place to eat', 'hungry', 'chef', 'dish', 'meal', 'brunch', 'bistro', 'buffet', 'catering', 'gourmet', 'fast food', 'fine dining', 'takeaway', 'delivery', 'restaurant booking'],
'movie': ['movie', 'cinema', 'film', 'ticket', 'showtime', 'showing', 'theater', 'flick', 'screening', 'film ticket', 'film show', 'blockbuster', 'premiere', 'trailer', 'director', 'actor', 'actress', 'plot', 'genre', 'screen', 'sequel', 'animation', 'documentary'],
'ride_share': ['ride', 'taxi', 'uber', 'lyft', 'car service', 'pickup', 'dropoff', 'driver', 'cab', 'hailing', 'rideshare', 'ride hailing', 'carpool', 'chauffeur', 'transit', 'transportation', 'hail ride'],
'coffee': ['coffee', 'café', 'cafe', 'starbucks', 'espresso', 'latte', 'mocha', 'americano', 'barista', 'brew', 'cappuccino', 'macchiato', 'iced coffee', 'cold brew', 'espresso machine', 'coffee shop', 'tea', 'chai', 'java', 'bean', 'roast', 'decaf'],
'pizza': ['pizza', 'delivery', 'order food', 'pepperoni', 'topping', 'pizzeria', 'slice', 'pie', 'margherita', 'deep dish', 'thin crust', 'cheese', 'oven', 'tossed', 'sauce', 'garlic bread', 'calzone'],
'auto': ['car', 'vehicle', 'repair', 'maintenance', 'mechanic', 'oil change', 'garage', 'auto shop', 'tire', 'check engine', 'battery', 'transmission', 'brake', 'engine diagnostics', 'carwash', 'detail', 'alignment', 'exhaust', 'spark plug', 'dashboard'],
}
query_lower = query.lower()
found = set()
for domain, kw_list in domain_keywords.items():
for kw in kw_list:
if kw in query_lower:
found.add(kw)
return list(found)
def length_adjust_score(self, text: str, base_score: float) -> float:
"""
Penalize very short lines, reward longer lines.
"""
words = text.split()
wcount = len(words)
# Penalty if under 4 words
if wcount < 4:
return base_score * 0.8
# Bonus for lines > 15 words
if wcount > 15:
bonus = min(0.03, 0.001 * (wcount - 15))
base_score += bonus
return base_score
def detect_domain_from_query(self, query: str) -> str:
"""
Detect the domain of the query based on keywords. Used for boosting FAISS search.
"""
domain_patterns = {
'restaurant': r'\b(restaurant|restaurants?|dining|food|foods?|dine|reservation|reservations?|table|tables?|menu|menus?|cuisine|cuisines?|eat|eats?|place\s?to\s?eat|places\s?to\s?eat|hungry|chef|chefs?|dish|dishes?|meal|meals?|fork|forks?|knife|knives?|spoon|spoons?|brunch|bistro|buffet|buffets?|catering|caterings?|gourmet|fast\s?food|fine\s?dining|takeaway|takeaways?|delivery|deliveries|restaurant\s?booking)\b',
'movie': r'\b(movie|movies?|cinema|cinemas?|film|films?|ticket|tickets?|showtime|showtimes?|showing|showings?|theater|theaters?|flick|flicks?|screening|screenings?|film\s?ticket|film\s?tickets?|film\s?show|film\s?shows?|blockbuster|blockbusters?|premiere|premieres?|trailer|trailers?|director|directors?|actor|actors?|actress|actresses?|plot|plots?|genre|genres?|screen|screens?|sequel|sequels?|animation|animations?|documentary|documentaries)\b',
'ride_share': r'\b(ride|rides?|taxi|taxis?|uber|lyft|car\s?service|car\s?services?|pickup|pickups?|dropoff|dropoffs?|driver|drivers?|cab|cabs?|hailing|hailings?|rideshare|rideshares?|ride\s?hailing|ride\s?hailings?|carpool|carpools?|chauffeur|chauffeurs?|transit|transits?|transportation|transportations?|hail\s?ride|hail\s?rides?)\b',
'coffee': r'\b(coffee|coffees?|café|cafés?|cafe|cafes?|starbucks|espresso|espressos?|latte|lattes?|mocha|mochas?|americano|americanos?|barista|baristas?|brew|brews?|cappuccino|cappuccinos?|macchiato|macchiatos?|iced\s?coffee|iced\s?coffees?|cold\s?brew|cold\s?brews?|espresso\s?machine|espresso\s?machines?|coffee\s?shop|coffee\s?shops?|tea|teas?|chai|chais?|java|javas?|bean|beans?|roast|roasts?|decaf)\b',
'pizza': r'\b(pizza|pizzas?|delivery|deliveries|order\s?food|order\s?foods?|pepperoni|pepperonis?|topping|toppings?|pizzeria|pizzerias?|slice|slices?|pie|pies?|margherita|margheritas?|deep\s?dish|deep\s?dishes?|thin\s?crust|thin\s?crusts?|cheese|cheeses?|oven|ovens?|tossed|tosses?|sauce|sauces?|garlic\s?bread|garlic\s?breads?|calzone|calzones?)\b',
'auto': r'\b(car|cars?|vehicle|vehicles?|repair|repairs?|maintenance|maintenances?|mechanic|mechanics?|oil\s?change|oil\s?changes?|garage|garages?|auto\s?shop|auto\s?shops?|tire|tires?|check\s?engine|check\s?engines?|battery|batteries?|transmission|transmissions?|brake|brakes?|engine\s?diagnostics|engine\s?diagnostic|carwash|carwashes?|detail|details?|alignment|alignments?|exhaust|exhausts?|spark\s?plug|spark\s?plugs?|dashboard|dashboards?)\b',
}
# Check for matches
for domain, pattern in domain_patterns.items():
if re.search(pattern, query.lower()):
return domain
return 'other'
def is_numeric_response(self, text: str) -> bool:
"""
Return True if `text` is purely digits and/or spaces.
"""
pattern = r'^[\s]*[\d]+([\s.,\d]+)*[\s]*$'
return bool(re.match(pattern, text.strip()))
def faiss_search(
self,
query: str,
domain: str = 'other',
top_k: int = 10,
boost_factor: float = 1.15
) -> List[Tuple[str, float]]:
"""
Retrieve top-k responses from the FAISS index (IndexFlatIP) given a user query.
Args:
query (str): The user input text.
domain (str): The detected domain from possible domains: ['restaurant', 'movie', 'ride_share', 'coffee', 'pizza', 'auto', 'other']
top_k (int): Number of top results to return.
boost_factor (float, optional): Factor to boost scores for keyword matches.
Returns:
List[Tuple[str, float]]: List of (response_text, similarity) sorted by descending similarity.
"""
# Encode the query
q_emb = self.data_pipeline.encode_query(query)
q_emb_np = q_emb.reshape(1, -1).astype('float32')
# Search the index
distances, indices = self.data_pipeline.index.search(q_emb_np, top_k * 10)
# IndexFlatIP: 'distances' are inner products (cosine similarities for normalized vectors).
candidates = []
for rank, idx in enumerate(indices[0]):
if idx < 0:
continue
text_dict = self.data_pipeline.response_pool[idx]
text = text_dict.get('text', '').strip()
cand_domain = text_dict.get('domain', 'other')
score = distances[0][rank]
# Skip purely numeric or extremely short text (fewer than 3 words):
words = text.split()
if len(words) < 4:
continue
if self.is_numeric_response(text):
continue
candidates.append((text, cand_domain, score))
if not candidates:
logger.warning("No valid candidates found after initial numeric/length filtering.")
return []
# Sort candidates by score descending
candidates.sort(key=lambda x: x[2], reverse=True)
# Filter in-domain responses
in_domain = [c for c in candidates if c[1] == domain]
if not in_domain:
logger.info(f"No in-domain responses found for '{domain}'. Using all candidates.")
in_domain = candidates
# Boost responses containing query keywords
query_keywords = self.extract_keywords(query)
boosted = []
for (resp_text, resp_domain, score) in in_domain:
new_score = score
# If the domain is known AND the response text shares any query keywords, boost it
if query_keywords and any(kw in resp_text.lower() for kw in query_keywords):
new_score *= boost_factor
# Apply length penalty/bonus
new_score = self.length_adjust_score(resp_text, new_score)
boosted.append((resp_text, new_score))
# Sort boosted responses
boosted.sort(key=lambda x: x[1], reverse=True)
# Debug logging (see FAISS responses)
# for resp, score in boosted[:100]:
# logger.debug(f"Candidate: '{resp}' with score {score}")
return boosted[:top_k]
def chat(
self,
query: str,
conversation_history: Optional[List[Tuple[str, str]]] = None,
quality_checker: Optional['ResponseQualityChecker'] = None,
top_k: int = 10,
) -> Tuple[str, List[Tuple[str, float]], Dict[str, Any]]:
"""
Live chat with the chatbot. Uses same processing flow as validation, except for context handling and quality checking.
"""
@self.run_on_device
def get_response(self_arg, query_arg):
# Build conversation context string
conversation_str = self_arg._build_conversation_context(query_arg, conversation_history)
# Retrieve and re-rank
results = self_arg.retrieve_responses(
query=conversation_str,
top_k=top_k,
reranker=self_arg.reranker,
summarizer=self_arg.summarizer,
summarize_threshold=512
)
# Handle low confidence or empty responses
if not results:
return ("I'm sorry, but I couldn't find a relevant response.", [], {})
metrics = quality_checker.check_response_quality(query_arg, results)
if not metrics.get('is_confident', False):
return ("I need more information to provide a good answer. Could you please clarify?", results, metrics)
return results[0][0], results, metrics
return get_response(self, query)
def _build_conversation_context(
self,
query: str,
conversation_history: Optional[List[Tuple[str, str]]]
) -> str:
"""
Build conversation context string from conversation history.
"""
if not conversation_history:
return f"{self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<USER>')]} {query}"
conversation_parts = []
for user_txt, assistant_txt in conversation_history:
conversation_parts.extend([
f"{self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<USER>')]} {user_txt}",
f"{self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<ASSISTANT>')]} {assistant_txt}"
])
conversation_parts.append(f"{self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<USER>')]} {query}")
return "\n".join(conversation_parts)
def train_model(
self,
tfrecord_file_path: str,
epochs: int = 20,
batch_size: int = 16,
validation_split: float = 0.2,
checkpoint_dir: str = "checkpoints/",
use_lr_schedule: bool = True,
peak_lr: float = 1e-5,
warmup_steps_ratio: float = 0.1,
early_stopping_patience: int = 3,
min_delta: float = 1e-4,
test_mode: bool = False,
initial_epoch: int = 0
) -> None:
"""
Train the retrieval model using a pre-prepared TFRecord dataset.
- Checkpoint loading/restoring
- LR scheduling
- Epoch/iteration tracking
- Training-history logging
- Early stopping
- Custom loss function (Contrastive loss with hard negative sampling))
"""
logger.info("Starting training with pre-prepared TFRecord dataset...")
def parse_tfrecord_fn(example_proto, max_length, neg_samples):
"""
Parses a single TFRecord example.
"""
feature_description = {
'query_ids': tf.io.FixedLenFeature([max_length], tf.int64),
'positive_ids': tf.io.FixedLenFeature([max_length], tf.int64),
'negative_ids': tf.io.FixedLenFeature([neg_samples * max_length], tf.int64),
}
parsed_features = tf.io.parse_single_example(example_proto, feature_description)
query_ids = tf.cast(parsed_features['query_ids'], tf.int32)
positive_ids = tf.cast(parsed_features['positive_ids'], tf.int32)
negative_ids = tf.cast(parsed_features['negative_ids'], tf.int32)
negative_ids = tf.reshape(negative_ids, [neg_samples, max_length])
return query_ids, positive_ids, negative_ids
# Count total records in TFRecord
raw_dataset = tf.data.TFRecordDataset(tfrecord_file_path)
total_pairs = sum(1 for _ in raw_dataset)
logger.info(f"Total pairs in TFRecord: {total_pairs}")
train_size = int(total_pairs * (1 - validation_split))
val_size = total_pairs - train_size
steps_per_epoch = math.ceil(train_size / batch_size)
val_steps = math.ceil(val_size / batch_size)
total_steps = steps_per_epoch * epochs
buffer_size = max(1, total_pairs // 2) # 50% of the dataset for shuffling
logger.info(f"Training pairs: {train_size}")
logger.info(f"Validation pairs: {val_size}")
logger.info(f"Steps per epoch: {steps_per_epoch}")
logger.info(f"Validation steps: {val_steps}")
logger.info(f"Total steps: {total_steps}")
# Set up optimizer & LR schedule
if use_lr_schedule:
warmup_steps = int(total_steps * warmup_steps_ratio)
lr_schedule = self._get_lr_schedule(
total_steps=total_steps,
peak_lr=tf.cast(peak_lr, tf.float32),
warmup_steps=warmup_steps
)
self.optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
logger.info("Using custom learning rate schedule.")
else:
self.optimizer = tf.keras.optimizers.Adam(learning_rate=tf.cast(peak_lr, tf.float32))
logger.info("Using fixed learning rate.")
# Dummy step to force initialization
dummy_input = tf.zeros((1, self.config.max_context_token_limit), dtype=tf.int32)
with tf.GradientTape() as tape:
dummy_output = self.encoder(dummy_input)
dummy_loss = tf.cast(tf.reduce_mean(dummy_output), tf.float32)
dummy_grads = tape.gradient(dummy_loss, self.encoder.trainable_variables)
self.optimizer.apply_gradients(zip(dummy_grads, self.encoder.trainable_variables))
# Create checkpoint and manager
checkpoint = tf.train.Checkpoint(
epoch=tf.Variable(0, dtype=tf.int32),
optimizer=self.optimizer,
model=self.encoder
)
# Create a CheckpointManager
manager = tf.train.CheckpointManager(
checkpoint,
directory=checkpoint_dir,
max_to_keep=3,
checkpoint_name='ckpt'
)
# Restore from existing checkpoint if one is provided
latest_checkpoint = manager.latest_checkpoint
history_path = Path(checkpoint_dir) / 'training_history.json'
# Log epoch losses across runs, including restore from checkpoint
if not hasattr(self, 'history'):
self.history = {'train_loss': [], 'val_loss': [], 'learning_rate': []}
if latest_checkpoint and not test_mode:
# Debug checkpoint loading
# logger.info(f"\nTrying to load checkpoint from: {latest_checkpoint}")
# reader = tf.train.load_checkpoint(latest_checkpoint)
# shape_from_key = reader.get_variable_to_shape_map()
# dtype_from_key = reader.get_variable_to_dtype_map()
# logger.info("\nCheckpoint Variables:")
# for key in shape_from_key:
# logger.info(f"{key}: dtype={dtype_from_key[key]} - Shape: {shape_from_key[key]}")
status = checkpoint.restore(latest_checkpoint)
status.assert_consumed()
logger.info(f"Restored from checkpoint: {latest_checkpoint}")
logger.info(f"Optimizer iterations after restore: {self.optimizer.iterations.numpy()}")
# Verify learning rate after restore
if use_lr_schedule:
current_lr = float(lr_schedule(self.optimizer.iterations))
else:
current_lr = float(self.optimizer.learning_rate.numpy())
logger.info(f"Current learning rate after restore: {current_lr:.2e}")
# Derive initial_epoch from checkpoint name if not passed in
ckpt_number = int(latest_checkpoint.split('ckpt-')[-1])
if initial_epoch == 0:
initial_epoch = ckpt_number
# Assign to checkpoint.epoch for counting
checkpoint.epoch.assign(tf.cast(initial_epoch, tf.int32))
logger.info(f"Resuming from epoch {initial_epoch}")
# Load history from file:
if history_path.exists():
try:
with open(history_path, 'r') as f:
self.history = json.load(f)
logger.info(f"Loaded previous training history from {history_path}")
except Exception as e:
logger.warning(f"Could not load history, starting fresh: {e}")
# Save custom weights not being saved in the full model.
# This was a bugfix to extract weights from a checkpoint without retraining.
# Before updating save_models, only Distilbert weights were being saved (custom layers were missed).
# Not needed, also not harmful.
self.save_models(Path(checkpoint_dir) / "pretrained_full_model")
logger.info(f"Manually saved custom weights after restore.")
else:
logger.info("Starting training from scratch")
checkpoint.epoch.assign(tf.cast(0, tf.int32))
initial_epoch = 0
# Set up TensorBoard
log_dir = Path(checkpoint_dir) / "tensorboard_logs"
log_dir.mkdir(parents=True, exist_ok=True)
current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
train_log_dir = str(log_dir / f"train_{current_time}")
val_log_dir = str(log_dir / f"val_{current_time}")
train_summary_writer = tf.summary.create_file_writer(train_log_dir)
val_summary_writer = tf.summary.create_file_writer(val_log_dir)
logger.info(f"TensorBoard logs will be saved in {log_dir}")
# Parse dataset
dataset = tf.data.TFRecordDataset(tfrecord_file_path)
# Debug mode uses small subset. Useful for CPU debugging.
if test_mode:
subset_size = 200
dataset = dataset.take(subset_size)
logger.info(f"TEST MODE: Using only {subset_size} examples")
# Recompute sizes, steps, epochs, etc., as needed
total_pairs = subset_size
train_size = int(total_pairs * (1 - validation_split))
val_size = total_pairs - train_size
batch_size = min(batch_size, val_size)
steps_per_epoch = math.ceil(train_size / batch_size)
val_steps = math.ceil(val_size / batch_size)
total_steps = steps_per_epoch * epochs
buffer_size = max(1, total_pairs // 10)
epochs = min(epochs, 5) # For quick debug
early_stopping_patience = 2
logger.info(f"New training pairs: {train_size}")
logger.info(f"New validation pairs: {val_size}")
dataset = dataset.map(
lambda x: parse_tfrecord_fn(x, self.config.max_context_token_limit, self.data_pipeline.neg_samples),
num_parallel_calls=tf.data.AUTOTUNE
)
# Train/val split
train_dataset = dataset.take(train_size)
val_dataset = dataset.skip(train_size).take(val_size)
# Shuffle and batch
train_dataset = train_dataset.shuffle(buffer_size=buffer_size)
train_dataset = train_dataset.batch(batch_size, drop_remainder=True)
train_dataset = train_dataset.prefetch(tf.data.AUTOTUNE)
val_dataset = val_dataset.batch(batch_size, drop_remainder=False)
val_dataset = val_dataset.prefetch(tf.data.AUTOTUNE)
val_dataset = val_dataset.cache()
# Training loop
best_val_loss = float("inf")
epochs_no_improve = 0
for epoch in range(int(checkpoint.epoch.numpy()) + 1, epochs + 1):
checkpoint.epoch.assign(epoch)
logger.info(f"Starting Epoch {epoch}...")
epoch_loss_avg = tf.keras.metrics.Mean(dtype=tf.float32)
batches_processed = 0
try:
train_pbar = tqdm(
total=steps_per_epoch,
desc=f"Training Epoch {epoch}",
unit="batch"
)
is_tqdm_train = True
except ImportError:
train_pbar = None
is_tqdm_train = False
# --- Training ---
for q_batch, p_batch, n_batch in train_dataset:
loss, grad_norm, post_clip_norm = self.train_step(q_batch, p_batch, n_batch)
epoch_loss_avg(loss)
batches_processed += 1
# Log to TensorBoard
with train_summary_writer.as_default():
step = (epoch - 1) * steps_per_epoch + batches_processed
tf.summary.scalar("loss", tf.cast(loss, tf.float32), step=step)
tf.summary.scalar("gradient_norm_pre_clip", tf.cast(grad_norm, tf.float32), step=step)
tf.summary.scalar("gradient_norm_post_clip", tf.cast(post_clip_norm, tf.float32), step=step)
# Update progress bar
if use_lr_schedule:
current_lr = float(lr_schedule(self.optimizer.iterations))
else:
current_lr = float(self.optimizer.learning_rate.numpy())
if is_tqdm_train:
train_pbar.update(1)
train_pbar.set_postfix({
"loss": f"{loss.numpy():.4f}",
"pre_clip": f"{grad_norm.numpy():.2e}",
"post_clip": f"{post_clip_norm.numpy():.2e}",
"lr": f"{current_lr:.2e}",
"batches": f"{batches_processed}/{steps_per_epoch}"
})
gc.collect()
# End the epoch early if we've processed all steps
if batches_processed >= steps_per_epoch:
break
if is_tqdm_train and train_pbar:
train_pbar.close()
# --- Validation ---
val_loss_avg = tf.keras.metrics.Mean(dtype=tf.float32)
val_batches_processed = 0
try:
val_pbar = tqdm(total=val_steps, desc="Validation", unit="batch")
is_tqdm_val = True
except ImportError:
val_pbar = None
is_tqdm_val = False
last_valid_val_loss = None
valid_batches = False
for q_batch, p_batch, n_batch in val_dataset:
# If batch is too small, skip
if tf.shape(q_batch)[0] < 2:
logger.warning(f"Skipping validation batch of size {tf.shape(q_batch)[0]}")
continue
valid_batches = True
val_loss = self.validation_step(q_batch, p_batch, n_batch)
val_loss_avg(val_loss)
last_valid_val_loss = val_loss
val_batches_processed += 1
if is_tqdm_val:
val_pbar.update(1)
val_pbar.set_postfix({
"val_loss": f"{val_loss.numpy():.4f}",
"batches": f"{val_batches_processed}/{val_steps}"
})
gc.collect()
if val_batches_processed >= val_steps:
break
if not valid_batches:
# If no valid batch is found, fallback
logger.warning("No valid validation batches in this epoch")
if last_valid_val_loss is not None:
val_loss = last_valid_val_loss
val_loss_avg(val_loss)
else:
val_loss = epoch_loss_avg.result()
val_loss_avg(val_loss)
if is_tqdm_val and val_pbar:
val_pbar.close()
# End of epoch: final stats
train_loss = epoch_loss_avg.result().numpy()
val_loss = val_loss_avg.result().numpy()
logger.info(f"Epoch {epoch} Complete: Train Loss={train_loss:.4f}, Val Loss={val_loss:.4f}")
# TensorBoard epoch logs
with train_summary_writer.as_default():
tf.summary.scalar("epoch_loss", train_loss, step=epoch)
with val_summary_writer.as_default():
tf.summary.scalar("val_loss", val_loss, step=epoch)
# Save checkpoint
manager.save()
# Save model for iterative testing/inference
model_save_path = Path(checkpoint_dir) / f"model_epoch_{epoch}"
self.save_models(model_save_path)
logger.info(f"Saved model for epoch {epoch} at {model_save_path}")
# Update local history
self.history['train_loss'].append(train_loss)
self.history['val_loss'].append(val_loss)
self.history.setdefault('learning_rate', []).append(current_lr)
def convert_to_py_floats(obj):
if isinstance(obj, dict):
return {k: convert_to_py_floats(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [convert_to_py_floats(x) for x in obj]
elif isinstance(obj, (np.float32, np.float64)):
return float(obj)
elif tf.is_tensor(obj):
return float(obj.numpy())
else:
return obj
json_history = convert_to_py_floats(self.history)
# Save training history to file every epoch
with open(history_path, 'w') as f:
json.dump(json_history, f)
logger.info(f"Saved training history to {history_path}")
# Early stopping
if val_loss < best_val_loss - min_delta:
best_val_loss = val_loss
epochs_no_improve = 0
logger.info(f"Validation loss improved to {val_loss:.4f}. Reset patience.")
else:
epochs_no_improve += 1
logger.info(f"No improvement this epoch. Patience: {epochs_no_improve}/{early_stopping_patience}")
if epochs_no_improve >= early_stopping_patience:
logger.info("Early stopping triggered.")
break
logger.info("Training completed!")
@tf.function
def train_step(
self,
q_batch: tf.Tensor,
p_batch: tf.Tensor,
n_batch: tf.Tensor
) -> tf.Tensor:
"""
Single training step using queries, positives, and hard negatives.
"""
with tf.GradientTape() as tape:
# Encode queries, positives, and negatives
q_enc = self.encoder(q_batch, training=True) # [batch_size, embed_dim]
p_enc = self.encoder(p_batch, training=True) # [batch_size, embed_dim]
shape = tf.shape(n_batch)
bs = shape[0]
neg_samples = shape[1]
# Flatten negatives to feed them in one pass: [batch_size * neg_samples, max_length]
n_batch_flat = tf.reshape(n_batch, [bs * neg_samples, shape[2]])
n_enc_flat = self.encoder(n_batch_flat, training=True) # [bs*neg_samples, embed_dim]
# Reshape back => [batch_size, neg_samples, embed_dim]
n_enc = tf.reshape(n_enc_flat, [bs, neg_samples, -1])
# Combine the positive embedding and negative embeddings along dim=1: shape [batch_size, 1 + neg_samples, embed_dim]
# Col 1 is the pos, subsequent cols are negatives
combined_p_n = tf.concat([tf.expand_dims(p_enc, axis=1), n_enc], axis=1) # [bs, (1+neg_samples), embed_dim]
# Compute scores: dot product of q_enc with each column in combined_p_n. `tf.einsum` handles the batch dimension
dot_products = tf.cast(tf.einsum('bd,bkd->bk', q_enc, combined_p_n), tf.float32)
labels = tf.zeros([bs], dtype=tf.int32) # Keep labels as int32
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels,
logits=dot_products
)
loss = tf.cast(tf.reduce_mean(loss), tf.float32)
# Calculate gradients and clip
gradients = tape.gradient(loss, self.encoder.trainable_variables)
gradients_norm = tf.cast(tf.linalg.global_norm(gradients), tf.float32)
max_grad_norm = tf.constant(1.5, dtype=tf.float32)
gradients, _ = tf.clip_by_global_norm(gradients, max_grad_norm, gradients_norm)
post_clip_norm = tf.cast(tf.linalg.global_norm(gradients), tf.float32)
self.optimizer.apply_gradients(zip(gradients, self.encoder.trainable_variables))
return loss, gradients_norm, post_clip_norm
@tf.function
def validation_step(
self,
q_batch: tf.Tensor,
p_batch: tf.Tensor,
n_batch: tf.Tensor
) -> tf.Tensor:
"""
Single validation step using queries, positives, and hard negatives.
Same idea as train_step, but without gradient updates.
"""
q_enc = self.encoder(q_batch, training=False)
p_enc = self.encoder(p_batch, training=False)
shape = tf.shape(n_batch)
bs = shape[0]
neg_samples = shape[1]
n_batch_flat = tf.reshape(n_batch, [bs * neg_samples, shape[2]])
n_enc_flat = self.encoder(n_batch_flat, training=False)
n_enc = tf.reshape(n_enc_flat, [bs, neg_samples, -1])
combined_p_n = tf.concat(
[tf.expand_dims(p_enc, axis=1), n_enc],
axis=1
)
dot_products = tf.cast(tf.einsum('bd,bkd->bk', q_enc, combined_p_n), tf.float32)
labels = tf.zeros([bs], dtype=tf.int32)
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels,
logits=dot_products
)
loss = tf.cast(tf.reduce_mean(loss), tf.float32)
return loss
def _get_lr_schedule(
self,
total_steps: int,
peak_lr: float,
warmup_steps: int
) -> tf.keras.optimizers.schedules.LearningRateSchedule:
"""
Custom learning rate schedule with warmup and cosine decay.
"""
class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
def __init__(
self,
total_steps: int,
peak_lr: float,
warmup_steps: int
):
super().__init__()
self.total_steps = tf.cast(total_steps, tf.float32)
self.peak_lr = tf.cast(peak_lr, tf.float32)
# warmup_steps 10% of total_steps
adjusted_warmup_steps = min(warmup_steps, max(1, total_steps // 10))
self.warmup_steps = tf.cast(adjusted_warmup_steps, tf.float32)
# Calculate constants
self.initial_lr = tf.cast(self.peak_lr * 0.1, tf.float32)
self.min_lr = tf.cast(self.peak_lr * 0.01, tf.float32)
logger.info(f"Learning rate schedule initialized:")
logger.info(f" Initial LR: {float(self.initial_lr):.6f}")
logger.info(f" Peak LR: {float(self.peak_lr):.6f}")
logger.info(f" Min LR: {float(self.min_lr):.6f}")
logger.info(f" Warmup steps: {int(self.warmup_steps)}")
logger.info(f" Total steps: {int(self.total_steps)}")
def __call__(self, step):
step = tf.cast(step, tf.float32)
# Warmup
warmup_factor = tf.cast(tf.minimum(1.0, step / self.warmup_steps), tf.float32)
warmup_lr = self.initial_lr + (self.peak_lr - self.initial_lr) * warmup_factor
# Decay
decay_steps = tf.cast(tf.maximum(1.0, self.total_steps - self.warmup_steps), tf.float32)
decay_factor = tf.cast((step - self.warmup_steps) / decay_steps, tf.float32)
decay_factor = tf.cast(tf.minimum(tf.maximum(0.0, decay_factor), 1.0), tf.float32)
cosine_decay = tf.cast(0.5 * (1.0 + tf.cos(tf.constant(math.pi, dtype=tf.float32) * decay_factor)), tf.float32)
decay_lr = self.min_lr + (self.peak_lr - self.min_lr) * cosine_decay
final_lr = tf.where(step < self.warmup_steps, warmup_lr, decay_lr)
# Ensure valid lr
final_lr = tf.maximum(self.min_lr, final_lr)
final_lr = tf.where(tf.math.is_finite(final_lr), final_lr, self.min_lr)
return final_lr
def get_config(self):
return {
"total_steps": self.total_steps,
"peak_lr": self.peak_lr,
"warmup_steps": self.warmup_steps,
}
return CustomSchedule(total_steps, peak_lr, warmup_steps)