csc525_retrieval_based_chatbot / run_chatbot_validation.py
JoeArmani
more structural updates
d7fc7a7
raw
history blame
5.43 kB
import os
import json
from chatbot_model import ChatbotConfig, RetrievalChatbot
from response_quality_checker import ResponseQualityChecker
from chatbot_validator import ChatbotValidator
from plotter import Plotter
from environment_setup import EnvironmentSetup
from logger_config import config_logger
logger = config_logger(__name__)
def run_interactive_chat(chatbot, quality_checker):
"""Separate function for interactive chat loop."""
while True:
try:
user_input = input("You: ")
except (KeyboardInterrupt, EOFError):
print("\nAssistant: Goodbye!")
break
if user_input.lower() in ["quit", "exit", "bye"]:
print("Assistant: Goodbye!")
break
response, candidates, metrics = chatbot.chat(
query=user_input,
conversation_history=None,
quality_checker=quality_checker,
top_k=10
)
print(f"Assistant: {response}")
# Show alternative responses if confident
if metrics.get("is_confident", False):
print("\nAlternative responses:")
for resp, score in candidates[1:4]:
print(f"Score: {score:.4f} - {resp}")
else:
print("\n[Low Confidence]: Consider rephrasing your query for better assistance.")
def run_chatbot_validation():
# Initialize environment
env = EnvironmentSetup()
env.initialize()
MODEL_DIR = "new_iteration/data_prep_iterative_models"
FAISS_INDICES_DIR = os.path.join(MODEL_DIR, "faiss_indices")
FAISS_INDEX_PRODUCTION_PATH = os.path.join(FAISS_INDICES_DIR, "faiss_index_production.index")
FAISS_INDEX_TEST_PATH = os.path.join(FAISS_INDICES_DIR, "faiss_index_test.index")
# Toggle 'production' or 'test' env
ENVIRONMENT = "production"
if ENVIRONMENT == "test":
FAISS_INDEX_PATH = FAISS_INDEX_TEST_PATH
RESPONSE_POOL_PATH = FAISS_INDEX_TEST_PATH.replace(".index", "_responses.json")
else:
FAISS_INDEX_PATH = FAISS_INDEX_PRODUCTION_PATH
RESPONSE_POOL_PATH = FAISS_INDEX_PRODUCTION_PATH.replace(".index", "_responses.json")
# Load the config
config_path = os.path.join(MODEL_DIR, "config.json")
if os.path.exists(config_path):
with open(config_path, "r", encoding="utf-8") as f:
config_dict = json.load(f)
config = ChatbotConfig.from_dict(config_dict)
logger.info(f"Loaded ChatbotConfig from {config_path}")
else:
config = ChatbotConfig()
logger.warning("No config.json found. Using default ChatbotConfig.")
# Load RetrievalChatbot in 'inference' mode
try:
chatbot = RetrievalChatbot.load_model(load_dir=MODEL_DIR, mode="inference")
logger.info("RetrievalChatbot loaded in 'inference' mode successfully.")
except Exception as e:
logger.error(f"Failed to load RetrievalChatbot: {e}")
return
# Confirm FAISS index & response pool exist
if not os.path.exists(FAISS_INDEX_PATH) or not os.path.exists(RESPONSE_POOL_PATH):
logger.error("FAISS index or response pool file is missing.")
return
# Load FAISS index and response pool
try:
chatbot.data_pipeline.load_faiss_index(FAISS_INDEX_PATH)
logger.info(f"FAISS index loaded from {FAISS_INDEX_PATH}.")
logger.info(f"FAISS dimensions: {chatbot.data_pipeline.index.d}")
logger.info(f"FAISS index type: {type(chatbot.data_pipeline.index)}")
logger.info(f"FAISS index total vectors: {chatbot.data_pipeline.index.ntotal}")
logger.info(f"FAISS is_trained: {chatbot.data_pipeline.index.is_trained}")
with open(RESPONSE_POOL_PATH, "r", encoding="utf-8") as f:
chatbot.data_pipeline.response_pool = json.load(f)
logger.info(f"Response pool loaded from {RESPONSE_POOL_PATH}.")
logger.info(f"\nTotal responses in pool: {len(chatbot.data_pipeline.response_pool)}")
# Validate dimension consistency
chatbot.data_pipeline.validate_faiss_index()
logger.info("FAISS index and response pool validated successfully.")
except Exception as e:
logger.error(f"Failed to load or validate FAISS index: {e}")
return
# Init QualityChecker and Validator
quality_checker = ResponseQualityChecker(data_pipeline=chatbot.data_pipeline)
validator = ChatbotValidator(chatbot=chatbot, quality_checker=quality_checker)
logger.info("ResponseQualityChecker and ChatbotValidator initialized.")
# Run validation
try:
validation_metrics = validator.run_validation(num_examples=5)
logger.info(f"Validation Metrics: {validation_metrics}")
except Exception as e:
logger.error(f"Validation process failed: {e}")
return
# Plot metrics
# try:
# plotter = Plotter(save_dir=env.training_dirs["plots"])
# plotter.plot_validation_metrics(validation_metrics)
# logger.info("Validation metrics plotted successfully.")
# except Exception as e:
# logger.error(f"Failed to plot validation metrics: {e}")
# Run interactive chat loop
logger.info("\nStarting interactive chat session...")
run_interactive_chat(chatbot, quality_checker)
if __name__ == "__main__":
run_chatbot_validation()