|
import os |
|
import json |
|
from chatbot_model import ChatbotConfig, RetrievalChatbot |
|
from response_quality_checker import ResponseQualityChecker |
|
from chatbot_validator import ChatbotValidator |
|
from plotter import Plotter |
|
from environment_setup import EnvironmentSetup |
|
from logger_config import config_logger |
|
|
|
logger = config_logger(__name__) |
|
|
|
def run_interactive_chat(chatbot, quality_checker): |
|
"""Separate function for interactive chat loop.""" |
|
while True: |
|
try: |
|
user_input = input("You: ") |
|
except (KeyboardInterrupt, EOFError): |
|
print("\nAssistant: Goodbye!") |
|
break |
|
|
|
if user_input.lower() in ["quit", "exit", "bye"]: |
|
print("Assistant: Goodbye!") |
|
break |
|
|
|
response, candidates, metrics = chatbot.chat( |
|
query=user_input, |
|
conversation_history=None, |
|
quality_checker=quality_checker, |
|
top_k=10 |
|
) |
|
|
|
print(f"Assistant: {response}") |
|
|
|
|
|
if metrics.get("is_confident", False): |
|
print("\nAlternative responses:") |
|
for resp, score in candidates[1:4]: |
|
print(f"Score: {score:.4f} - {resp}") |
|
else: |
|
print("\n[Low Confidence]: Consider rephrasing your query for better assistance.") |
|
|
|
def run_chatbot_validation(): |
|
|
|
env = EnvironmentSetup() |
|
env.initialize() |
|
|
|
MODEL_DIR = "new_iteration/data_prep_iterative_models" |
|
FAISS_INDICES_DIR = os.path.join(MODEL_DIR, "faiss_indices") |
|
FAISS_INDEX_PRODUCTION_PATH = os.path.join(FAISS_INDICES_DIR, "faiss_index_production.index") |
|
FAISS_INDEX_TEST_PATH = os.path.join(FAISS_INDICES_DIR, "faiss_index_test.index") |
|
|
|
|
|
ENVIRONMENT = "production" |
|
if ENVIRONMENT == "test": |
|
FAISS_INDEX_PATH = FAISS_INDEX_TEST_PATH |
|
RESPONSE_POOL_PATH = FAISS_INDEX_TEST_PATH.replace(".index", "_responses.json") |
|
else: |
|
FAISS_INDEX_PATH = FAISS_INDEX_PRODUCTION_PATH |
|
RESPONSE_POOL_PATH = FAISS_INDEX_PRODUCTION_PATH.replace(".index", "_responses.json") |
|
|
|
|
|
config_path = os.path.join(MODEL_DIR, "config.json") |
|
if os.path.exists(config_path): |
|
with open(config_path, "r", encoding="utf-8") as f: |
|
config_dict = json.load(f) |
|
config = ChatbotConfig.from_dict(config_dict) |
|
logger.info(f"Loaded ChatbotConfig from {config_path}") |
|
else: |
|
config = ChatbotConfig() |
|
logger.warning("No config.json found. Using default ChatbotConfig.") |
|
|
|
|
|
try: |
|
chatbot = RetrievalChatbot.load_model(load_dir=MODEL_DIR, mode="inference") |
|
logger.info("RetrievalChatbot loaded in 'inference' mode successfully.") |
|
except Exception as e: |
|
logger.error(f"Failed to load RetrievalChatbot: {e}") |
|
return |
|
|
|
|
|
if not os.path.exists(FAISS_INDEX_PATH) or not os.path.exists(RESPONSE_POOL_PATH): |
|
logger.error("FAISS index or response pool file is missing.") |
|
return |
|
|
|
|
|
try: |
|
chatbot.data_pipeline.load_faiss_index(FAISS_INDEX_PATH) |
|
logger.info(f"FAISS index loaded from {FAISS_INDEX_PATH}.") |
|
logger.info(f"FAISS dimensions: {chatbot.data_pipeline.index.d}") |
|
logger.info(f"FAISS index type: {type(chatbot.data_pipeline.index)}") |
|
logger.info(f"FAISS index total vectors: {chatbot.data_pipeline.index.ntotal}") |
|
logger.info(f"FAISS is_trained: {chatbot.data_pipeline.index.is_trained}") |
|
|
|
with open(RESPONSE_POOL_PATH, "r", encoding="utf-8") as f: |
|
chatbot.data_pipeline.response_pool = json.load(f) |
|
logger.info(f"Response pool loaded from {RESPONSE_POOL_PATH}.") |
|
logger.info(f"\nTotal responses in pool: {len(chatbot.data_pipeline.response_pool)}") |
|
|
|
|
|
chatbot.data_pipeline.validate_faiss_index() |
|
logger.info("FAISS index and response pool validated successfully.") |
|
|
|
except Exception as e: |
|
logger.error(f"Failed to load or validate FAISS index: {e}") |
|
return |
|
|
|
|
|
quality_checker = ResponseQualityChecker(data_pipeline=chatbot.data_pipeline) |
|
validator = ChatbotValidator(chatbot=chatbot, quality_checker=quality_checker) |
|
logger.info("ResponseQualityChecker and ChatbotValidator initialized.") |
|
|
|
|
|
try: |
|
validation_metrics = validator.run_validation(num_examples=5) |
|
logger.info(f"Validation Metrics: {validation_metrics}") |
|
except Exception as e: |
|
logger.error(f"Validation process failed: {e}") |
|
return |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logger.info("\nStarting interactive chat session...") |
|
run_interactive_chat(chatbot, quality_checker) |
|
|
|
if __name__ == "__main__": |
|
run_chatbot_validation() |
|
|