csc525_retrieval_based_chatbot / tf_data_pipeline.py
JoeArmani
training and inference updates
5b413d1
raw
history blame
32.6 kB
import os
import gc
import numpy as np
import faiss
import tensorflow as tf
import h5py
import math
from tqdm import tqdm
import json
from pathlib import Path
from typing import Union, Optional, List, Tuple, Generator
from transformers import AutoTokenizer
from typing import List, Tuple, Generator
from transformers import AutoTokenizer
from gpu_monitor import GPUMemoryMonitor
from logger_config import config_logger
logger = config_logger(__name__)
class TFDataPipeline:
def __init__(
self,
config,
tokenizer,
encoder,
index_file_path: str,
response_pool: List[str],
max_length: int,
query_embeddings_cache: dict,
neg_samples: int = 3,
index_type: str = 'IndexFlatIP',
nlist: int = 100,
max_retries: int = 3
):
self.config = config
self.tokenizer = tokenizer
self.encoder = encoder
self.index_file_path = index_file_path
self.response_pool = response_pool
self.max_length = max_length
self.neg_samples = neg_samples
self.query_embeddings_cache = query_embeddings_cache # In-memory cache for embeddings
self.index_type = index_type
self.nlist = nlist
self.embedding_batch_size = 16 if len(response_pool) < 100 else 64
self.search_batch_size = 16 if len(response_pool) < 100 else 64
self.max_batch_size = 16 if len(response_pool) < 100 else 64
self.memory_monitor = GPUMemoryMonitor()
self.max_retries = max_retries
if os.path.exists(index_file_path):
logger.info(f"Loading existing FAISS index from {index_file_path}...")
self.index = faiss.read_index(index_file_path)
self.validate_faiss_index()
logger.info("FAISS index loaded and validated successfully.")
else:
# Initialize FAISS index
dimension = self.encoder.config.embedding_dim
self.index = faiss.IndexFlatIP(dimension)
logger.info(f"Initialized FAISS IndexFlatIP with dimension {dimension}.")
if not self.index.is_trained:
# Train the index if it's not trained. # TODO: Replace 'dimension' with embedding size
dimension = self.query_embeddings_cache[next(iter(self.query_embeddings_cache))].shape[0]
self.index.train(np.array(list(self.query_embeddings_cache.values())).astype(np.float32))
self.index.add(np.array(list(self.query_embeddings_cache.values())).astype(np.float32))
def save_embeddings_cache_hdf5(self, cache_file_path: str):
"""Save the embeddings cache to an HDF5 file."""
with h5py.File(cache_file_path, 'w') as hf:
for query, emb in self.query_embeddings_cache.items():
hf.create_dataset(query, data=emb)
logger.info(f"Embeddings cache saved to {cache_file_path}.")
def load_embeddings_cache_hdf5(self, cache_file_path: str):
"""Load the embeddings cache from an HDF5 file."""
with h5py.File(cache_file_path, 'r') as hf:
for query in hf.keys():
self.query_embeddings_cache[query] = hf[query][:]
logger.info(f"Embeddings cache loaded from {cache_file_path}.")
def save_faiss_index(self, index_file_path: str):
faiss.write_index(self.index, index_file_path)
logger.info(f"FAISS index saved to {index_file_path}")
def load_faiss_index(self, index_file_path: str):
"""Load the FAISS index from the specified file path."""
if os.path.exists(index_file_path):
self.index = faiss.read_index(index_file_path)
logger.info(f"FAISS index loaded from {index_file_path}.")
else:
logger.error(f"FAISS index file not found at {index_file_path}.")
raise FileNotFoundError(f"FAISS index file not found at {index_file_path}.")
def validate_faiss_index(self):
"""Validates that the FAISS index has the correct dimensionality."""
expected_dim = self.encoder.config.embedding_dim
if self.index.d != expected_dim:
logger.error(f"FAISS index dimension {self.index.d} does not match encoder embedding dimension {expected_dim}.")
raise ValueError("FAISS index dimensionality mismatch.")
logger.info("FAISS index dimension validated successfully.")
def save_tokenizer(self, tokenizer_dir: str):
self.tokenizer.save_pretrained(tokenizer_dir)
logger.info(f"Tokenizer saved to {tokenizer_dir}")
def load_tokenizer(self, tokenizer_dir: str):
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_dir)
logger.info(f"Tokenizer loaded from {tokenizer_dir}")
@staticmethod
def load_json_training_data(data_path: Union[str, Path], debug_samples: Optional[int] = None) -> List[dict]:
"""
Load training data from a JSON file.
Args:
data_path (Union[str, Path]): Path to the JSON file containing dialogues.
debug_samples (Optional[int]): Number of samples to load for debugging.
Returns:
List[dict]: List of dialogue dictionaries.
"""
logger.info(f"Loading training data from {data_path}...")
data_path = Path(data_path)
if not data_path.exists():
logger.error(f"Data file {data_path} does not exist.")
return []
with open(data_path, 'r', encoding='utf-8') as f:
dialogues = json.load(f)
if debug_samples is not None:
dialogues = dialogues[:debug_samples]
logger.info(f"Debug mode: Limited to {debug_samples} dialogues")
logger.info(f"Loaded {len(dialogues)} dialogues.")
return dialogues
def collect_responses(self, dialogues: List[dict]) -> List[str]:
"""Extract unique assistant responses from dialogues."""
response_set = set()
for dialogue in tqdm(dialogues, desc="Processing Dialogues", unit="dialogue"):
turns = dialogue.get('turns', [])
for turn in turns:
speaker = turn.get('speaker')
text = turn.get('text', '').strip()
if speaker == 'assistant' and text:
# Ensure we don't exclude valid shorter responses
if len(text) <= self.max_length:
response_set.add(text)
logger.info(f"Collected {len(response_set)} unique assistant responses from dialogues.")
return list(response_set)
def _extract_pairs_from_dialogue(self, dialogue: dict) -> List[Tuple[str, str]]:
"""Extract query-response pairs from a dialogue."""
pairs = []
turns = dialogue.get('turns', [])
for i in range(len(turns) - 1):
current_turn = turns[i]
next_turn = turns[i+1]
if (current_turn.get('speaker') == 'user' and
next_turn.get('speaker') == 'assistant' and
'text' in current_turn and
'text' in next_turn):
query = current_turn['text'].strip()
positive = next_turn['text'].strip()
pairs.append((query, positive))
return pairs
def compute_and_index_response_embeddings(self):
"""
Computes embeddings for the response pool and adds them to the FAISS index with progress bars.
"""
logger.info("Computing embeddings for the response pool...")
# Ensure all responses are strings
if not all(isinstance(response, str) for response in self.response_pool):
logger.error("All elements in response_pool must be strings.")
raise ValueError("Invalid data type in response_pool.")
# Tokenization
logger.info("Tokenizing responses...")
encoded_responses = self.tokenizer(
self.response_pool,
padding=True,
truncation=True,
max_length=self.max_length,
return_tensors='tf'
)
response_ids = encoded_responses['input_ids']
# Compute embeddings in batches with progress bar
batch_size = getattr(self, 'embedding_batch_size', 64) # Default to 64 if not set
total_responses = len(response_ids)
logger.info(f"Computing embeddings in batches of {batch_size}...")
embeddings = []
with tqdm(total=total_responses, desc="Computing Embeddings", unit="response") as pbar:
for i in range(0, total_responses, batch_size):
batch_ids = response_ids[i:i + batch_size]
# Compute embeddings
batch_embeddings = self.encoder(batch_ids, training=False).numpy()
# Normalize embeddings for cosine similarity
faiss.normalize_L2(batch_embeddings)
embeddings.append(batch_embeddings)
pbar.update(len(batch_ids))
if embeddings:
embeddings = np.vstack(embeddings).astype(np.float32)
# Add embeddings to FAISS index with progress bar
logger.info(f"Adding {len(embeddings)} response embeddings to FAISS index...")
# Determine number of batches for indexing
index_batch_size = getattr(self, 'index_batch_size', 1000) # Adjust as needed
total_embeddings = len(embeddings)
num_index_batches = math.ceil(total_embeddings / index_batch_size)
with tqdm(total=total_embeddings, desc="Indexing Embeddings", unit="embedding") as pbar_index:
for i in range(0, total_embeddings, index_batch_size):
batch = embeddings[i:i + index_batch_size]
self.index.add(batch)
pbar_index.update(len(batch))
logger.info("Response embeddings added to FAISS index.")
else:
logger.warning("No embeddings to add to FAISS index.")
# **Sanity Check:** Verify the number of embeddings in FAISS index
logger.info(f"Total embeddings in FAISS index after addition: {self.index.ntotal}")
def _find_hard_negatives_batch(self, queries: List[str], positives: List[str]) -> List[List[str]]:
"""Find hard negatives for a batch of queries with error handling and retries."""
retry_count = 0
total_responses = len(self.response_pool)
# Set k to be neg_samples + additional candidates to improve negative selection
k = self.neg_samples + 0
while retry_count < self.max_retries:
try:
# Compute embeddings in sub-batches to manage memory
batch_size = 128 # Example sub-batch size; adjust as needed
query_embeddings = []
for i in range(0, len(queries), batch_size):
sub_queries = queries[i:i + batch_size]
sub_embeddings = np.vstack([
self.query_embeddings_cache[q] for q in sub_queries
]).astype(np.float32)
faiss.normalize_L2(sub_embeddings)
query_embeddings.append(sub_embeddings)
query_embeddings = np.vstack(query_embeddings)
# Ensure contiguous memory layout
query_embeddings = np.ascontiguousarray(query_embeddings)
# Perform FAISS search on CPU
distances, indices = self.index.search(query_embeddings, k)
all_negatives = []
for query_indices, query, positive in zip(indices, queries, positives):
negatives = []
positive_strip = positive.strip()
seen = {positive_strip}
for idx in query_indices:
if idx >= 0 and idx < total_responses:
candidate = self.response_pool[idx].strip()
if candidate and candidate not in seen:
seen.add(candidate)
negatives.append(candidate)
if len(negatives) >= self.neg_samples:
break
# If not enough negatives are found, pad with a special token
while len(negatives) < self.neg_samples:
negatives.append("<EMPTY_NEGATIVE>") # Use a special token
all_negatives.append(negatives)
return all_negatives
except KeyError as ke:
retry_count += 1
logger.warning(f"Hard negative search attempt {retry_count} failed due to missing embeddings: {ke}")
if retry_count == self.max_retries:
logger.error("Max retries reached for hard negative search due to missing embeddings.")
return [["<EMPTY_NEGATIVE>"] * self.neg_samples for _ in queries]
# Perform memory cleanup
gc.collect()
if tf.config.list_physical_devices('GPU'):
tf.keras.backend.clear_session()
except Exception as e:
retry_count += 1
logger.warning(f"Hard negative search attempt {retry_count} failed: {e}")
if retry_count == self.max_retries:
logger.error("Max retries reached for hard negative search.")
return [["<EMPTY_NEGATIVE>"] * self.neg_samples for _ in queries]
# Perform memory cleanup
gc.collect()
if tf.config.list_physical_devices('GPU'):
tf.keras.backend.clear_session()
def encode_query(self, query: str, context: Optional[List[Tuple[str, str]]] = None) -> np.ndarray:
"""
Encode a query with optional conversation context into an embedding vector.
Args:
query (str): The user query.
context (Optional[List[Tuple[str, str]]]): Optional conversation history as a list of (user, assistant) tuples.
Returns:
np.ndarray: The normalized embedding vector for the query.
"""
# Prepare query with context
if context:
context_str = ' '.join([
f"{self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<USER>')]} {q} "
f"{self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<ASSISTANT>')]} {r}"
for q, r in context[-self.config.max_context_turns:]
])
query = f"{context_str} {self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<USER>')]}" \
f" {query}"
else:
query = f"{self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<USER>')]} {query}"
# Tokenize and encode
encodings = self.tokenizer(
[query],
padding='max_length',
truncation=True,
max_length=self.max_length,
return_tensors='np' # Use NumPy arrays for compatibility with FAISS
)
input_ids = encodings['input_ids']
# Verify token IDs
max_id = np.max(input_ids)
new_vocab_size = len(self.tokenizer)
if max_id >= new_vocab_size:
logger.error(f"Token ID {max_id} exceeds the vocabulary size {new_vocab_size}.")
raise ValueError("Token ID exceeds vocabulary size.")
# Get embeddings from the shared encoder
embeddings = self.encoder(input_ids, training=False).numpy()
# Normalize embeddings for cosine similarity
faiss.normalize_L2(embeddings)
return embeddings[0] # Return as a 1D array
def encode_responses(self, responses: List[str], context: Optional[List[Tuple[str, str]]] = None) -> np.ndarray:
"""
Encode a list of responses into embedding vectors.
Args:
responses (List[str]): List of response texts.
context (Optional[List[Tuple[str, str]]]): Optional conversation history as a list of (user, assistant) tuples.
Returns:
np.ndarray: Array of normalized embedding vectors.
"""
# Prepare responses with context if provided
if context:
prepared_responses = []
for response in responses:
context_str = ' '.join([
f"{self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<USER>')]} {q} "
f"{self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<ASSISTANT>')]} {r}"
for q, r in context[-self.config.max_context_turns:]
])
full_response = f"{context_str} {self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<ASSISTANT>')]} {response}"
prepared_responses.append(full_response)
else:
prepared_responses = [
f"{self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<ASSISTANT>')]} {resp}"
for resp in responses
]
# Tokenize and encode
encodings = self.tokenizer(
prepared_responses,
padding='max_length',
truncation=True,
max_length=self.max_length,
return_tensors='np' # Use NumPy arrays for compatibility with FAISS
)
input_ids = encodings['input_ids']
# Verify token IDs
max_id = np.max(input_ids)
new_vocab_size = len(self.tokenizer)
if max_id >= new_vocab_size:
logger.error(f"Token ID {max_id} exceeds the vocabulary size {new_vocab_size}.")
raise ValueError("Token ID exceeds vocabulary size.")
# Get embeddings from the shared encoder
embeddings = self.encoder(input_ids, training=False).numpy()
# Normalize embeddings for cosine similarity
faiss.normalize_L2(embeddings)
return embeddings.astype('float32')
def prepare_and_save_data(self, dialogues: List[dict], tf_record_path: str, batch_size: int = 32):
"""
Processes dialogues in batches and saves to a TFRecord file using optimized batch tokenization and encoding.
Args:
dialogues (List[dict]): List of dialogue dictionaries.
tf_record_path (str): Path to save the TFRecord file.
batch_size (int): Number of dialogues to process per batch.
"""
logger.info(f"Preparing and saving data to {tf_record_path}...")
num_dialogues = len(dialogues)
num_batches = math.ceil(num_dialogues / batch_size)
with tf.io.TFRecordWriter(tf_record_path) as writer:
# Initialize progress bar
with tqdm(total=num_batches, desc="Preparing Data Batches", unit="batch") as pbar:
for i in range(num_batches):
start_idx = i * batch_size
end_idx = min(start_idx + batch_size, num_dialogues)
batch_dialogues = dialogues[start_idx:end_idx]
# Extract all query-positive pairs in the batch
queries = []
positives = []
for dialogue in batch_dialogues:
pairs = self._extract_pairs_from_dialogue(dialogue)
for query, positive in pairs:
if len(query) <= self.max_length and len(positive) <= self.max_length:
queries.append(query)
positives.append(positive)
if not queries:
pbar.update(1)
continue # Skip if no valid queries
# Compute and cache query embeddings
try:
self._compute_embeddings(queries)
except Exception as e:
logger.error(f"Error computing embeddings: {e}")
pbar.update(1)
continue # Skip to the next batch
# Find hard negatives for the batch
try:
hard_negatives = self._find_hard_negatives_batch(queries, positives)
except Exception as e:
logger.error(f"Error finding hard negatives: {e}")
pbar.update(1)
continue # Skip to the next batch
# Tokenize and encode all queries, positives, and negatives in the batch
try:
encoded_queries = self.tokenizer.batch_encode_plus(
queries,
max_length=self.config.max_context_token_limit,
truncation=True,
padding='max_length',
return_tensors='tf'
)
encoded_positives = self.tokenizer.batch_encode_plus(
positives,
max_length=self.config.max_context_token_limit,
truncation=True,
padding='max_length',
return_tensors='tf'
)
except Exception as e:
logger.error(f"Error during tokenization: {e}")
pbar.update(1)
continue # Skip to the next batch
# Flatten hard_negatives while maintaining alignment
# Assuming hard_negatives is a list of lists, where each sublist corresponds to a query
try:
flattened_negatives = [neg for sublist in hard_negatives for neg in sublist]
encoded_negatives = self.tokenizer.batch_encode_plus(
flattened_negatives,
max_length=self.config.max_context_token_limit,
truncation=True,
padding='max_length',
return_tensors='tf'
)
# Reshape encoded_negatives['input_ids'] to [num_queries, num_negatives, max_length]
num_negatives = self.config.neg_samples
reshaped_negatives = encoded_negatives['input_ids'].numpy().reshape(-1, num_negatives, self.config.max_context_token_limit)
except Exception as e:
logger.error(f"Error during negatives tokenization: {e}")
pbar.update(1)
continue # Skip to the next batch
# Serialize each example and write to TFRecord
for j in range(len(queries)):
try:
q_id = encoded_queries['input_ids'][j].numpy()
p_id = encoded_positives['input_ids'][j].numpy()
n_id = reshaped_negatives[j]
feature = {
'query_ids': tf.train.Feature(int64_list=tf.train.Int64List(value=q_id)),
'positive_ids': tf.train.Feature(int64_list=tf.train.Int64List(value=p_id)),
'negative_ids': tf.train.Feature(int64_list=tf.train.Int64List(value=n_id.flatten())),
}
example = tf.train.Example(features=tf.train.Features(feature=feature))
writer.write(example.SerializeToString())
except Exception as e:
logger.error(f"Error serializing example {j} in batch {i}: {e}")
continue # Skip to the next example
# Update progress bar
pbar.update(1)
logger.info(f"Data preparation complete. TFRecord saved.")
def _compute_embeddings(self, queries: List[str]) -> None:
new_queries = [q for q in queries if q not in self.query_embeddings_cache]
if not new_queries:
return # All queries already cached
# Compute embeddings for new queries
new_embeddings = []
for i in range(0, len(new_queries), self.embedding_batch_size):
batch_queries = new_queries[i:i + self.embedding_batch_size]
encoded = self.tokenizer(
batch_queries,
padding=True,
truncation=True,
max_length=self.max_length,
return_tensors='tf'
)
batch_embeddings = self.encoder(encoded['input_ids'], training=False).numpy()
faiss.normalize_L2(batch_embeddings)
new_embeddings.extend(batch_embeddings)
# Update the cache
for query, emb in zip(new_queries, new_embeddings):
self.query_embeddings_cache[query] = emb
def data_generator(self, dialogues: List[dict]) -> Generator[Tuple[str, str, List[str]], None, None]:
"""
Generates training examples: (query, positive, hard_negatives).
Wrapped the outer loop with tqdm for progress tracking.
"""
total_dialogues = len(dialogues)
logger.debug(f"Total dialogues to process: {total_dialogues}")
# Initialize tqdm progress bar
with tqdm(total=total_dialogues, desc="Processing Dialogues", unit="dialogue") as pbar:
for dialogue in dialogues:
pairs = self._extract_pairs_from_dialogue(dialogue)
for query, positive in pairs:
# Ensure embeddings are computed, find hard negatives, etc.
self._compute_embeddings([query])
hard_negatives = self._find_hard_negatives_batch([query], [positive])[0]
yield (query, positive, hard_negatives)
pbar.update(1)
def get_tf_dataset(self, dialogues: List[dict], batch_size: int) -> tf.data.Dataset:
"""
Creates a tf.data.Dataset for streaming training that yields
(input_ids_query, input_ids_positive, input_ids_negatives).
"""
# 1) Start with a generator dataset
dataset = tf.data.Dataset.from_generator(
lambda: self.data_generator(dialogues),
output_signature=(
tf.TensorSpec(shape=(), dtype=tf.string), # Query (single string)
tf.TensorSpec(shape=(), dtype=tf.string), # Positive (single string)
tf.TensorSpec(shape=(self.neg_samples,), dtype=tf.string) # Hard Negatives (list of strings)
)
)
# 2) Batch the raw strings
dataset = dataset.batch(batch_size, drop_remainder=True)
# 3) Map them through a tokenize step using `tf.py_function`
dataset = dataset.map(
lambda q, p, n: self._tokenize_triple(q, p, n),
num_parallel_calls=1 #tf.data.AUTOTUNE
)
dataset = dataset.prefetch(tf.data.AUTOTUNE)
return dataset
def _tokenize_triple(
self,
q: tf.Tensor,
p: tf.Tensor,
n: tf.Tensor
) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]:
"""
Wraps a Python function via tf.py_function to convert tf.Tensors of strings
-> Python lists of strings -> HF tokenizer -> Tensors of IDs.
q is shape [batch_size], p is shape [batch_size],
n is shape [batch_size, neg_samples] (i.e., each row is a list of negatives).
"""
# Use tf.py_function with limited parallelism
q_ids, p_ids, n_ids = tf.py_function(
func=self._tokenize_triple_py,
inp=[q, p, n, tf.constant(self.max_length), tf.constant(self.neg_samples)],
Tout=[tf.int32, tf.int32, tf.int32]
)
# Manually set shape information
q_ids.set_shape([None, self.max_length]) # [batch_size, max_length]
p_ids.set_shape([None, self.max_length]) # [batch_size, max_length]
n_ids.set_shape([None, self.neg_samples, self.max_length]) # [batch_size, neg_samples, max_length]
return q_ids, p_ids, n_ids
def _tokenize_triple_py(
self,
q: tf.Tensor,
p: tf.Tensor,
n: tf.Tensor,
max_len: tf.Tensor,
neg_samples: tf.Tensor
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Python function that:
- Decodes each tf.string Tensor to a Python list of strings
- Calls the HF tokenizer
- Reshapes negatives
- Returns np.array of int32s for (q_ids, p_ids, n_ids).
q: shape [batch_size], p: shape [batch_size]
n: shape [batch_size, neg_samples]
max_len: scalar int
neg_samples: scalar int
"""
max_len = int(max_len.numpy()) # Convert to Python int
neg_samples = int(neg_samples.numpy())
# 1) Convert Tensors -> Python lists of strings
q_list = [q_i.decode("utf-8") for q_i in q.numpy()] # shape [batch_size]
p_list = [p_i.decode("utf-8") for p_i in p.numpy()] # shape [batch_size]
# shape [batch_size, neg_samples], decode each row
n_list = []
for row in n.numpy():
# row is shape [neg_samples], each is a tf.string
decoded = [neg.decode("utf-8") for neg in row]
n_list.append(decoded)
# 2) Tokenize queries & positives
q_enc = self.tokenizer(
q_list,
padding="max_length",
truncation=True,
max_length=max_len,
return_tensors="np"
)
p_enc = self.tokenizer(
p_list,
padding="max_length",
truncation=True,
max_length=max_len,
return_tensors="np"
)
# 3) Tokenize negatives
# Flatten [batch_size, neg_samples] -> single list
flattened_negatives = [neg for row in n_list for neg in row]
if len(flattened_negatives) == 0:
# No negatives at all: return a zero array
n_ids = np.zeros((len(q_list), neg_samples, max_len), dtype=np.int32)
else:
n_enc = self.tokenizer(
flattened_negatives,
padding="max_length",
truncation=True,
max_length=max_len,
return_tensors="np"
)
# shape [batch_size * neg_samples, max_len]
n_input_ids = n_enc["input_ids"]
# We want to reshape to [batch_size, neg_samples, max_len]
# Handle cases where there might be fewer negatives
batch_size = len(q_list)
n_ids_list = []
for i in range(batch_size):
start_idx = i * neg_samples
end_idx = start_idx + neg_samples
row_negs = n_input_ids[start_idx:end_idx]
# If fewer negatives, pad with zeros
if row_negs.shape[0] < neg_samples:
deficit = neg_samples - row_negs.shape[0]
pad_arr = np.zeros((deficit, max_len), dtype=np.int32)
row_negs = np.concatenate([row_negs, pad_arr], axis=0)
n_ids_list.append(row_negs)
# stack them -> shape [batch_size, neg_samples, max_len]
n_ids = np.stack(n_ids_list, axis=0)
# 4) Return as np.int32 arrays
q_ids = q_enc["input_ids"].astype(np.int32) # shape [batch_size, max_len]
p_ids = p_enc["input_ids"].astype(np.int32) # shape [batch_size, max_len]
n_ids = n_ids.astype(np.int32) # shape [batch_size, neg_samples, max_len]
return q_ids, p_ids, n_ids