csc525_retrieval_based_chatbot / run_chatbot_validation.py
JoeArmani
chat refinements
c7c1b4e
import os
import json
from sentence_transformers import SentenceTransformer
from chatbot_config import ChatbotConfig
from chatbot_model import RetrievalChatbot
from response_quality_checker import ResponseQualityChecker
from chatbot_validator import ChatbotValidator
from plotter import Plotter
from environment_setup import EnvironmentSetup
from logger_config import config_logger
from tf_data_pipeline import TFDataPipeline
logger = config_logger(__name__)
def run_chatbot_validation():
# Initialize environment
env = EnvironmentSetup()
env.initialize()
MODEL_DIR = "models"
FAISS_INDICES_DIR = os.path.join(MODEL_DIR, "faiss_indices")
FAISS_INDEX_PRODUCTION_PATH = os.path.join(FAISS_INDICES_DIR, "faiss_index_production.index")
FAISS_INDEX_TEST_PATH = os.path.join(FAISS_INDICES_DIR, "faiss_index_test.index")
# Toggle 'production' or 'test' env
ENVIRONMENT = "production"
if ENVIRONMENT == "test":
FAISS_INDEX_PATH = FAISS_INDEX_TEST_PATH
RESPONSE_POOL_PATH = FAISS_INDEX_TEST_PATH.replace(".index", "_responses.json")
else:
FAISS_INDEX_PATH = FAISS_INDEX_PRODUCTION_PATH
RESPONSE_POOL_PATH = FAISS_INDEX_PRODUCTION_PATH.replace(".index", "_responses.json")
# Load the config
config_path = os.path.join(MODEL_DIR, "config.json")
if os.path.exists(config_path):
with open(config_path, "r", encoding="utf-8") as f:
config_dict = json.load(f)
config = ChatbotConfig.from_dict(config_dict)
logger.info(f"Loaded ChatbotConfig from {config_path}")
else:
config = ChatbotConfig()
logger.warning("No config.json found. Using default ChatbotConfig.")
# Init SentenceTransformer
try:
encoder = SentenceTransformer(config.pretrained_model)
logger.info(f"Loaded SentenceTransformer model: {config.pretrained_model}")
except Exception as e:
logger.error(f"Failed to load SentenceTransformer: {e}")
return
# Load FAISS index and response pool
try:
# Initialize TFDataPipeline
data_pipeline = TFDataPipeline(
config=config,
tokenizer=encoder.tokenizer,
encoder=encoder,
response_pool=[],
query_embeddings_cache={},
index_type='IndexFlatIP',
faiss_index_file_path=FAISS_INDEX_PATH
)
if not os.path.exists(FAISS_INDEX_PATH) or not os.path.exists(RESPONSE_POOL_PATH):
logger.error("FAISS index or response pool file is missing.")
return
data_pipeline.load_faiss_index(FAISS_INDEX_PATH)
logger.info(f"FAISS index loaded from {FAISS_INDEX_PATH}.")
with open(RESPONSE_POOL_PATH, "r", encoding="utf-8") as f:
data_pipeline.response_pool = json.load(f)
logger.info(f"Response pool loaded from {RESPONSE_POOL_PATH}.")
logger.info(f"Total responses in pool: {len(data_pipeline.response_pool)}")
# Validate dimension consistency
data_pipeline.validate_faiss_index()
logger.info("FAISS index and response pool validated successfully.")
except Exception as e:
logger.error(f"Failed to load or validate FAISS index: {e}")
return
# Init QualityChecker and Validator
try:
chatbot = RetrievalChatbot.load_model(load_dir=MODEL_DIR, mode="inference")
quality_checker = ResponseQualityChecker(data_pipeline=data_pipeline)
validator = ChatbotValidator(chatbot=chatbot, quality_checker=quality_checker)
logger.info("ResponseQualityChecker and ChatbotValidator initialized.")
# Run validation
validation_metrics = validator.run_validation(num_examples=5)
logger.info(f"Validation Metrics: {validation_metrics}")
except Exception as e:
logger.error(f"Validation process failed: {e}")
return
# Plot metrics
try:
plotter = Plotter(save_dir=env.training_dirs["plots"])
plotter.plot_validation_metrics(validation_metrics)
logger.info("Validation metrics plotted successfully.")
except Exception as e:
logger.error(f"Failed to plot validation metrics: {e}")
# Run interactive chat loop
try:
logger.info("\nStarting interactive chat session...")
chatbot.run_interactive_chat(quality_checker=quality_checker, show_alternatives=True)
except Exception as e:
logger.error(f"Interactive chat session failed: {e}")
if __name__ == "__main__":
run_chatbot_validation()