|
import os |
|
import json |
|
from sentence_transformers import SentenceTransformer |
|
from chatbot_config import ChatbotConfig |
|
from chatbot_model import RetrievalChatbot |
|
from response_quality_checker import ResponseQualityChecker |
|
from chatbot_validator import ChatbotValidator |
|
from plotter import Plotter |
|
from environment_setup import EnvironmentSetup |
|
from logger_config import config_logger |
|
from tf_data_pipeline import TFDataPipeline |
|
|
|
logger = config_logger(__name__) |
|
|
|
def run_chatbot_validation(): |
|
|
|
env = EnvironmentSetup() |
|
env.initialize() |
|
|
|
MODEL_DIR = "models" |
|
FAISS_INDICES_DIR = os.path.join(MODEL_DIR, "faiss_indices") |
|
FAISS_INDEX_PRODUCTION_PATH = os.path.join(FAISS_INDICES_DIR, "faiss_index_production.index") |
|
FAISS_INDEX_TEST_PATH = os.path.join(FAISS_INDICES_DIR, "faiss_index_test.index") |
|
|
|
|
|
ENVIRONMENT = "production" |
|
if ENVIRONMENT == "test": |
|
FAISS_INDEX_PATH = FAISS_INDEX_TEST_PATH |
|
RESPONSE_POOL_PATH = FAISS_INDEX_TEST_PATH.replace(".index", "_responses.json") |
|
else: |
|
FAISS_INDEX_PATH = FAISS_INDEX_PRODUCTION_PATH |
|
RESPONSE_POOL_PATH = FAISS_INDEX_PRODUCTION_PATH.replace(".index", "_responses.json") |
|
|
|
|
|
config_path = os.path.join(MODEL_DIR, "config.json") |
|
if os.path.exists(config_path): |
|
with open(config_path, "r", encoding="utf-8") as f: |
|
config_dict = json.load(f) |
|
config = ChatbotConfig.from_dict(config_dict) |
|
logger.info(f"Loaded ChatbotConfig from {config_path}") |
|
else: |
|
config = ChatbotConfig() |
|
logger.warning("No config.json found. Using default ChatbotConfig.") |
|
|
|
|
|
try: |
|
encoder = SentenceTransformer(config.pretrained_model) |
|
logger.info(f"Loaded SentenceTransformer model: {config.pretrained_model}") |
|
except Exception as e: |
|
logger.error(f"Failed to load SentenceTransformer: {e}") |
|
return |
|
|
|
|
|
try: |
|
|
|
data_pipeline = TFDataPipeline( |
|
config=config, |
|
tokenizer=encoder.tokenizer, |
|
encoder=encoder, |
|
response_pool=[], |
|
query_embeddings_cache={}, |
|
index_type='IndexFlatIP', |
|
faiss_index_file_path=FAISS_INDEX_PATH |
|
) |
|
|
|
if not os.path.exists(FAISS_INDEX_PATH) or not os.path.exists(RESPONSE_POOL_PATH): |
|
logger.error("FAISS index or response pool file is missing.") |
|
return |
|
|
|
data_pipeline.load_faiss_index(FAISS_INDEX_PATH) |
|
logger.info(f"FAISS index loaded from {FAISS_INDEX_PATH}.") |
|
|
|
with open(RESPONSE_POOL_PATH, "r", encoding="utf-8") as f: |
|
data_pipeline.response_pool = json.load(f) |
|
logger.info(f"Response pool loaded from {RESPONSE_POOL_PATH}.") |
|
logger.info(f"Total responses in pool: {len(data_pipeline.response_pool)}") |
|
|
|
|
|
data_pipeline.validate_faiss_index() |
|
logger.info("FAISS index and response pool validated successfully.") |
|
except Exception as e: |
|
logger.error(f"Failed to load or validate FAISS index: {e}") |
|
return |
|
|
|
|
|
try: |
|
chatbot = RetrievalChatbot.load_model(load_dir=MODEL_DIR, mode="inference") |
|
quality_checker = ResponseQualityChecker(data_pipeline=data_pipeline) |
|
validator = ChatbotValidator(chatbot=chatbot, quality_checker=quality_checker) |
|
logger.info("ResponseQualityChecker and ChatbotValidator initialized.") |
|
|
|
|
|
validation_metrics = validator.run_validation(num_examples=5) |
|
logger.info(f"Validation Metrics: {validation_metrics}") |
|
except Exception as e: |
|
logger.error(f"Validation process failed: {e}") |
|
return |
|
|
|
|
|
try: |
|
plotter = Plotter(save_dir=env.training_dirs["plots"]) |
|
plotter.plot_validation_metrics(validation_metrics) |
|
logger.info("Validation metrics plotted successfully.") |
|
except Exception as e: |
|
logger.error(f"Failed to plot validation metrics: {e}") |
|
|
|
|
|
try: |
|
logger.info("\nStarting interactive chat session...") |
|
chatbot.run_interactive_chat(quality_checker=quality_checker, show_alternatives=True) |
|
except Exception as e: |
|
logger.error(f"Interactive chat session failed: {e}") |
|
|
|
|
|
if __name__ == "__main__": |
|
run_chatbot_validation() |