JoeArmani
commited on
Commit
·
9decf80
1
Parent(s):
19403c5
FAISS and streaming updates
Browse files- chatbot_model.py +1336 -671
- conversation_summarizer.py +3 -3
- environment_setup.py +15 -11
- gpu_monitor.py +68 -0
- run_model_train.py +11 -16
chatbot_model.py
CHANGED
@@ -1,26 +1,35 @@
|
|
|
|
1 |
from transformers import TFAutoModel, AutoTokenizer
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
4 |
-
|
|
|
|
|
5 |
import math
|
6 |
from dataclasses import dataclass
|
7 |
import json
|
8 |
-
from tqdm import tqdm
|
9 |
from pathlib import Path
|
10 |
import datetime
|
11 |
import faiss
|
|
|
|
|
12 |
from response_quality_checker import ResponseQualityChecker
|
13 |
from cross_encoder_reranker import CrossEncoderReranker
|
14 |
from conversation_summarizer import DeviceAwareModel, Summarizer
|
|
|
|
|
15 |
from logger_config import config_logger
|
|
|
|
|
|
|
16 |
logger = config_logger(__name__)
|
17 |
|
18 |
@dataclass
|
19 |
class ChatbotConfig:
|
20 |
"""Configuration for the RetrievalChatbot."""
|
21 |
-
vocab_size: int = 30526 # DistilBERT vocab size
|
22 |
max_context_token_limit: int = 512
|
23 |
-
embedding_dim: int = 512
|
24 |
encoder_units: int = 256
|
25 |
num_attention_heads: int = 8
|
26 |
dropout_rate: float = 0.2
|
@@ -130,16 +139,16 @@ class RetrievalChatbot(DeviceAwareModel):
|
|
130 |
summarizer = Summarizer(device=self.device)
|
131 |
self.summarizer = summarizer
|
132 |
|
133 |
-
# Configure XLA optimization if on GPU/TPU
|
134 |
-
if self.device in ["GPU", "TPU"]:
|
135 |
-
|
136 |
-
|
137 |
|
138 |
-
# Configure mixed precision for GPU/TPU
|
139 |
-
if self.device != "CPU":
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
|
144 |
# Special tokens
|
145 |
self.special_tokens = {
|
@@ -155,18 +164,13 @@ class RetrievalChatbot(DeviceAwareModel):
|
|
155 |
{'additional_special_tokens': list(self.special_tokens.values())}
|
156 |
)
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
else:
|
163 |
-
self._build_models()
|
164 |
-
|
165 |
-
# Initialize FAISS index
|
166 |
-
self._initialize_faiss()
|
167 |
|
168 |
-
#
|
169 |
-
self.
|
170 |
|
171 |
# Initialize training history
|
172 |
self.history = {
|
@@ -176,9 +180,10 @@ class RetrievalChatbot(DeviceAwareModel):
|
|
176 |
"val_metrics": {}
|
177 |
}
|
178 |
|
179 |
-
def
|
180 |
"""Initialize the shared encoder."""
|
181 |
logger.info("Building encoder model...")
|
|
|
182 |
|
183 |
# Shared encoder for both queries and responses
|
184 |
self.encoder = EncoderModel(
|
@@ -191,11 +196,10 @@ class RetrievalChatbot(DeviceAwareModel):
|
|
191 |
self.encoder.pretrained.resize_token_embeddings(new_vocab_size)
|
192 |
logger.info(f"Token embeddings resized to: {new_vocab_size}")
|
193 |
|
194 |
-
#
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
logger.info(f" {attr}")
|
199 |
|
200 |
# Try different ways to get embedding dimension
|
201 |
try:
|
@@ -227,45 +231,18 @@ class RetrievalChatbot(DeviceAwareModel):
|
|
227 |
logger.error("Vocabulary size is less than embedding dimension.")
|
228 |
raise ValueError("Vocabulary size is less than embedding dimension.")
|
229 |
|
230 |
-
def
|
231 |
-
"""
|
232 |
-
logger.info("
|
233 |
-
# Determine if GPU FAISS is available
|
234 |
-
try:
|
235 |
-
res = faiss.StandardGpuResources()
|
236 |
-
self.faiss_gpu = True
|
237 |
-
logger.info("FAISS GPU resources initialized.")
|
238 |
-
except Exception as e:
|
239 |
-
self.faiss_gpu = False
|
240 |
-
logger.info("FAISS GPU resources not available. Using FAISS CPU.")
|
241 |
-
|
242 |
-
# Initialize FAISS index for Inner Product (for cosine similarity)
|
243 |
-
if self.faiss_gpu:
|
244 |
-
self.index = faiss.IndexFlatIP(self.config.embedding_dim)
|
245 |
-
self.index = faiss.index_cpu_to_gpu(res, 0, self.index)
|
246 |
-
else:
|
247 |
-
self.index = faiss.IndexFlatIP(self.config.embedding_dim)
|
248 |
-
logger.info("FAISS index initialized.")
|
249 |
-
|
250 |
-
def verify_faiss_index(self):
|
251 |
-
"""Verify that FAISS index matches the response pool."""
|
252 |
-
indexed_size = self.index.ntotal
|
253 |
-
pool_size = len(self.response_pool)
|
254 |
-
logger.info(f"FAISS index size: {indexed_size}")
|
255 |
-
logger.info(f"Response pool size: {pool_size}")
|
256 |
-
if indexed_size != pool_size:
|
257 |
-
logger.warning("Mismatch between FAISS index size and response pool size.")
|
258 |
-
else:
|
259 |
-
logger.info("FAISS index correctly matches the response pool.")
|
260 |
-
|
261 |
-
|
262 |
-
def _precompute_and_index_responses(self, dialogues: List[dict]):
|
263 |
-
"""Precompute embeddings for all responses and index them using FAISS."""
|
264 |
-
logger.info("Precomputing response embeddings and indexing with FAISS...")
|
265 |
|
266 |
-
# Use tqdm for collecting responses
|
267 |
responses = []
|
268 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
turns = dialogue.get('turns', [])
|
270 |
for turn in turns:
|
271 |
if turn.get('speaker') == 'assistant' and 'text' in turn:
|
@@ -275,33 +252,97 @@ class RetrievalChatbot(DeviceAwareModel):
|
|
275 |
unique_responses = list(set(responses))
|
276 |
logger.info(f"Found {len(unique_responses)} unique responses.")
|
277 |
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
|
292 |
-
#
|
293 |
-
|
294 |
-
|
295 |
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
|
301 |
-
#
|
302 |
-
|
303 |
-
|
304 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
|
306 |
def encode_responses(
|
307 |
self,
|
@@ -309,55 +350,390 @@ class RetrievalChatbot(DeviceAwareModel):
|
|
309 |
batch_size: int = 64
|
310 |
) -> tf.Tensor:
|
311 |
"""
|
312 |
-
Encodes
|
313 |
-
to avoid running out of memory when there are many responses.
|
314 |
-
|
315 |
-
Args:
|
316 |
-
responses (List[str]): The list of response texts to encode.
|
317 |
-
batch_size (int): How many responses to encode per chunk.
|
318 |
-
Adjust based on available GPU/CPU memory.
|
319 |
-
|
320 |
-
Returns:
|
321 |
-
tf.Tensor: Tensor of shape (N, emb_dim) with all response embeddings.
|
322 |
"""
|
323 |
-
# Accumulate embeddings in a list and concatenate at the end
|
324 |
all_embeddings = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
325 |
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
encodings = self.tokenizer(
|
333 |
-
batch_texts,
|
334 |
-
padding='max_length',
|
335 |
-
truncation=True,
|
336 |
-
max_length=self.config.max_context_token_limit,
|
337 |
-
return_tensors='tf',
|
338 |
-
)
|
339 |
-
|
340 |
-
# Run the encoder forward pass
|
341 |
-
input_ids = encodings['input_ids']
|
342 |
-
embeddings_batch = self.encoder(input_ids, training=False)
|
343 |
-
|
344 |
-
# Cast to float32 if needed
|
345 |
-
if embeddings_batch.dtype != tf.float32:
|
346 |
-
embeddings_batch = tf.cast(embeddings_batch, tf.float32)
|
347 |
|
348 |
-
|
349 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
|
351 |
-
# Concatenate
|
|
|
352 |
if len(all_embeddings) == 1:
|
353 |
-
# Only one batch
|
354 |
final_embeddings = all_embeddings[0]
|
355 |
else:
|
356 |
-
# Multiple batches, concatenate
|
357 |
final_embeddings = tf.concat(all_embeddings, axis=0)
|
358 |
|
359 |
return final_embeddings
|
360 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
361 |
def encode_query(self, query: str, context: Optional[List[Tuple[str, str]]] = None) -> tf.Tensor:
|
362 |
"""Encode a query with optional conversation context."""
|
363 |
# Prepare query with context
|
@@ -436,7 +812,7 @@ class RetrievalChatbot(DeviceAwareModel):
|
|
436 |
"""Retrieve top-k responses using FAISS."""
|
437 |
# Encode the query
|
438 |
q_emb = self.encode_query(query) # Shape: [1, embedding_dim]
|
439 |
-
q_emb_np = q_emb.numpy().astype('float32') # Ensure type
|
440 |
|
441 |
# Normalize the query embedding for cosine similarity
|
442 |
faiss.normalize_L2(q_emb_np)
|
@@ -523,130 +899,9 @@ class RetrievalChatbot(DeviceAwareModel):
|
|
523 |
logger.info(f"Loaded {len(dialogues)} dialogues.")
|
524 |
return dialogues
|
525 |
|
526 |
-
def
|
527 |
-
self,
|
528 |
-
dialogues: List[dict],
|
529 |
-
neg_samples: int = 1,
|
530 |
-
debug_samples: int = None
|
531 |
-
) -> Tuple[tf.Tensor, tf.Tensor]:
|
532 |
-
"""
|
533 |
-
Prepares dataset for multiple-negatives ranking,
|
534 |
-
but also appends 'hard negative' pairs for each query.
|
535 |
-
|
536 |
-
We'll generate:
|
537 |
-
- (query, positive) as usual
|
538 |
-
- (query, negative) for each query, using FAISS top-1 approx. negative.
|
539 |
-
Then, in-batch training sees them as 'two different positives'
|
540 |
-
for the same query, forcing the model to discriminate them.
|
541 |
-
"""
|
542 |
-
|
543 |
-
logger.info("Preparing in-batch dataset with hard negatives...")
|
544 |
-
|
545 |
-
queries, positives = [], []
|
546 |
-
|
547 |
-
# Assemble (q, p)
|
548 |
-
for dialogue in dialogues:
|
549 |
-
turns = dialogue.get('turns', [])
|
550 |
-
for i in range(len(turns) - 1):
|
551 |
-
current_turn = turns[i]
|
552 |
-
next_turn = turns[i+1]
|
553 |
-
|
554 |
-
if (current_turn.get('speaker') == 'user'
|
555 |
-
and next_turn.get('speaker') == 'assistant'
|
556 |
-
and 'text' in current_turn
|
557 |
-
and 'text' in next_turn):
|
558 |
-
|
559 |
-
query_text = current_turn['text'].strip()
|
560 |
-
pos_text = next_turn['text'].strip()
|
561 |
-
|
562 |
-
queries.append(query_text)
|
563 |
-
positives.append(pos_text)
|
564 |
-
|
565 |
-
# Debug slicing
|
566 |
-
if debug_samples is not None:
|
567 |
-
queries = queries[:debug_samples]
|
568 |
-
positives = positives[:debug_samples]
|
569 |
-
logger.info(f"Debug mode: limited to {debug_samples} pairs.")
|
570 |
-
|
571 |
-
logger.info(f"Prepared {len(queries)} (query, positive) pairs initially.")
|
572 |
-
|
573 |
-
# Find a hard negative from FAISS for each (q, p)
|
574 |
-
# Create a second 'positive' row => (q, negative). In-batch, it's seen as a different 'positive' row, but is a hard negative.
|
575 |
-
augmented_queries = []
|
576 |
-
augmented_positives = []
|
577 |
-
|
578 |
-
for q_text, p_text in zip(queries, positives):
|
579 |
-
neg_texts = self._find_hard_negative(q_text, p_text, top_k=5, neg_samples=neg_samples)
|
580 |
-
for neg_text in neg_texts:
|
581 |
-
augmented_queries.append(q_text)
|
582 |
-
augmented_positives.append(neg_text)
|
583 |
-
|
584 |
-
logger.info(f"Found hard negatives for {len(augmented_queries)} queries.")
|
585 |
-
|
586 |
-
# Combine them into a single big list -> Original pairs: (q, p) & Hard neg pairs: (q, n)
|
587 |
-
final_queries = queries + augmented_queries
|
588 |
-
final_positives = positives + augmented_positives
|
589 |
-
logger.info(f"Total dataset size after adding hard neg: {len(final_queries)}")
|
590 |
-
|
591 |
-
# Tokenize
|
592 |
-
encoded_queries = self.tokenizer(
|
593 |
-
final_queries,
|
594 |
-
padding='max_length',
|
595 |
-
truncation=True,
|
596 |
-
max_length=self.config.max_context_token_limit,
|
597 |
-
return_tensors='tf'
|
598 |
-
)
|
599 |
-
encoded_positives = self.tokenizer(
|
600 |
-
final_positives,
|
601 |
-
padding='max_length',
|
602 |
-
truncation=True,
|
603 |
-
max_length=self.config.max_context_token_limit,
|
604 |
-
return_tensors='tf'
|
605 |
-
)
|
606 |
-
|
607 |
-
q_tensor = encoded_queries['input_ids']
|
608 |
-
p_tensor = encoded_positives['input_ids']
|
609 |
-
|
610 |
-
logger.info("Tokenized and padded sequences for in-batch training + hard negatives.")
|
611 |
-
return q_tensor, p_tensor
|
612 |
-
|
613 |
-
def _find_hard_negative(
|
614 |
-
self,
|
615 |
-
query_text: str,
|
616 |
-
positive_text: str,
|
617 |
-
top_k: int = 5,
|
618 |
-
neg_samples: int = 1
|
619 |
-
) -> List[str]:
|
620 |
-
"""
|
621 |
-
Return up to `neg_samples` unique negatives from top_k FAISS results,
|
622 |
-
excluding the known positive_text.
|
623 |
-
"""
|
624 |
-
# Encode the query to get the embedding
|
625 |
-
query_emb = self.encode_query(query_text)
|
626 |
-
q_emb_np = query_emb.numpy().astype('float32')
|
627 |
-
|
628 |
-
# Normalize for cosine similarity
|
629 |
-
faiss.normalize_L2(q_emb_np)
|
630 |
-
|
631 |
-
# Search in FAISS
|
632 |
-
distances, indices = self.index.search(q_emb_np, top_k)
|
633 |
-
|
634 |
-
# Exclude the actual positive from these results
|
635 |
-
hard_negatives = []
|
636 |
-
for idx in indices[0]:
|
637 |
-
if idx < len(self.response_pool):
|
638 |
-
candidate = self.response_pool[idx].strip()
|
639 |
-
if candidate != positive_text.strip():
|
640 |
-
hard_negatives.append(candidate)
|
641 |
-
if len(hard_negatives) == neg_samples:
|
642 |
-
break
|
643 |
-
|
644 |
-
return hard_negatives
|
645 |
-
|
646 |
-
def train(
|
647 |
self,
|
648 |
-
|
649 |
-
p_pad: tf.Tensor,
|
650 |
epochs: int = 20,
|
651 |
batch_size: int = 16,
|
652 |
validation_split: float = 0.2,
|
@@ -656,23 +911,41 @@ class RetrievalChatbot(DeviceAwareModel):
|
|
656 |
warmup_steps_ratio: float = 0.1,
|
657 |
early_stopping_patience: int = 3,
|
658 |
min_delta: float = 1e-4,
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
logger.info(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
668 |
|
669 |
-
|
670 |
-
|
671 |
-
|
|
|
|
|
672 |
total_steps = steps_per_epoch * epochs
|
673 |
-
logger.info(f"Total training steps (approx): {total_steps}")
|
674 |
|
675 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
676 |
if use_lr_schedule:
|
677 |
warmup_steps = int(total_steps * warmup_steps_ratio)
|
678 |
lr_schedule = self._get_lr_schedule(
|
@@ -686,175 +959,290 @@ class RetrievalChatbot(DeviceAwareModel):
|
|
686 |
self.optimizer = tf.keras.optimizers.Adam(learning_rate=peak_lr)
|
687 |
logger.info("Using fixed learning rate.")
|
688 |
|
689 |
-
#
|
690 |
-
train_q = q_pad[:train_size]
|
691 |
-
train_p = p_pad[:train_size]
|
692 |
-
val_q = q_pad[train_size:]
|
693 |
-
val_p = p_pad[train_size:]
|
694 |
-
|
695 |
-
train_dataset = (tf.data.Dataset.from_tensor_slices((train_q, train_p))
|
696 |
-
.shuffle(4096)
|
697 |
-
.batch(batch_size)
|
698 |
-
.prefetch(tf.data.AUTOTUNE))
|
699 |
-
|
700 |
-
val_dataset = (tf.data.Dataset.from_tensor_slices((val_q, val_p))
|
701 |
-
.batch(batch_size)
|
702 |
-
.prefetch(tf.data.AUTOTUNE))
|
703 |
-
|
704 |
-
# 3) Checkpoint + manager
|
705 |
checkpoint = tf.train.Checkpoint(optimizer=self.optimizer, model=self.encoder)
|
706 |
manager = tf.train.CheckpointManager(checkpoint, checkpoint_dir, max_to_keep=3)
|
707 |
|
708 |
-
#
|
709 |
log_dir = Path(checkpoint_dir) / "tensorboard_logs"
|
710 |
log_dir.mkdir(parents=True, exist_ok=True)
|
711 |
-
|
712 |
current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
713 |
train_log_dir = str(log_dir / f"train_{current_time}")
|
714 |
val_log_dir = str(log_dir / f"val_{current_time}")
|
715 |
-
|
716 |
train_summary_writer = tf.summary.create_file_writer(train_log_dir)
|
717 |
val_summary_writer = tf.summary.create_file_writer(val_log_dir)
|
718 |
-
|
719 |
logger.info(f"TensorBoard logs will be saved in {log_dir}")
|
720 |
|
721 |
-
#
|
722 |
best_val_loss = float("inf")
|
723 |
epochs_no_improve = 0
|
724 |
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
|
753 |
-
|
754 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
755 |
|
756 |
-
|
|
|
|
|
|
|
757 |
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
|
|
|
|
|
762 |
|
763 |
-
|
|
|
|
|
764 |
|
765 |
-
|
766 |
-
|
767 |
-
|
768 |
-
|
769 |
-
for i in range(len(accum_grads)):
|
770 |
-
accum_grads[i] /= accum_steps
|
771 |
|
772 |
-
|
773 |
-
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
|
780 |
-
|
781 |
-
|
782 |
-
|
783 |
-
|
784 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
785 |
else:
|
786 |
-
current_lr =
|
787 |
-
|
788 |
-
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
#
|
804 |
-
|
805 |
-
|
806 |
-
|
807 |
-
|
808 |
-
|
809 |
-
|
810 |
-
|
811 |
-
|
812 |
-
|
813 |
-
|
814 |
-
|
815 |
-
|
816 |
-
|
817 |
-
|
818 |
-
|
819 |
-
|
820 |
-
|
821 |
-
|
822 |
-
|
823 |
-
|
824 |
-
|
825 |
-
|
826 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
827 |
|
828 |
-
|
829 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
830 |
|
831 |
-
|
832 |
|
833 |
-
# TensorBoard: validation loss
|
834 |
-
with val_summary_writer.as_default():
|
835 |
-
tf.summary.scalar("val_loss", val_loss, step=epoch)
|
836 |
|
837 |
-
|
838 |
-
|
|
|
|
|
|
|
|
|
839 |
|
840 |
-
|
841 |
-
self.history['train_loss'].append(train_loss)
|
842 |
-
self.history['val_loss'].append(val_loss)
|
843 |
-
self.history.setdefault('learning_rate', []).append(float(current_lr_value))
|
844 |
|
845 |
-
#
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
850 |
else:
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
|
855 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
856 |
|
857 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
858 |
|
859 |
def _get_lr_schedule(
|
860 |
self,
|
@@ -994,277 +1382,554 @@ class RetrievalChatbot(DeviceAwareModel):
|
|
994 |
conversation_parts.append(f"{self.special_tokens['user']} {query}")
|
995 |
return "\n".join(conversation_parts)
|
996 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
997 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
998 |
|
|
|
|
|
|
|
|
|
|
|
999 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1000 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1001 |
|
1002 |
-
|
1003 |
-
|
1004 |
-
|
1005 |
-
|
1006 |
-
|
1007 |
-
# def prepare_dataset(
|
1008 |
-
# self,
|
1009 |
-
# dialogues: List[dict],
|
1010 |
-
# debug_samples: int = None
|
1011 |
-
# ) -> Tuple[tf.Tensor, tf.Tensor]:
|
1012 |
-
# """
|
1013 |
-
# Prepares dataset for in-batch negatives:
|
1014 |
-
# Only returns (query, positive) pairs.
|
1015 |
-
# """
|
1016 |
-
# logger.info("Preparing in-batch dataset...")
|
1017 |
-
|
1018 |
-
# queries, positives = [], []
|
1019 |
-
|
1020 |
-
# for dialogue in dialogues:
|
1021 |
-
# turns = dialogue.get('turns', [])
|
1022 |
-
# for i in range(len(turns) - 1):
|
1023 |
-
# current_turn = turns[i]
|
1024 |
-
# next_turn = turns[i+1]
|
1025 |
-
|
1026 |
-
# if (current_turn.get('speaker') == 'user' and
|
1027 |
-
# next_turn.get('speaker') == 'assistant' and
|
1028 |
-
# 'text' in current_turn and
|
1029 |
-
# 'text' in next_turn):
|
1030 |
|
1031 |
-
#
|
1032 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1033 |
|
1034 |
-
|
1035 |
-
|
1036 |
-
|
1037 |
-
|
1038 |
-
|
1039 |
-
|
1040 |
-
|
1041 |
-
#
|
1042 |
-
|
1043 |
-
|
1044 |
-
|
1045 |
-
# # Tokenize queries
|
1046 |
-
# encoded_queries = self.tokenizer(
|
1047 |
-
# queries,
|
1048 |
-
# padding='max_length',
|
1049 |
-
# truncation=True,
|
1050 |
-
# max_length=self.config.max_sequence_length,
|
1051 |
-
# return_tensors='tf'
|
1052 |
-
# )
|
1053 |
-
# # Tokenize positives
|
1054 |
-
# encoded_positives = self.tokenizer(
|
1055 |
-
# positives,
|
1056 |
-
# padding='max_length',
|
1057 |
-
# truncation=True,
|
1058 |
-
# max_length=self.config.max_sequence_length,
|
1059 |
-
# return_tensors='tf'
|
1060 |
-
# )
|
1061 |
-
|
1062 |
-
# q_tensor = encoded_queries['input_ids']
|
1063 |
-
# p_tensor = encoded_positives['input_ids']
|
1064 |
-
|
1065 |
-
# logger.info("Tokenized and padded sequences for in-batch training.")
|
1066 |
-
# return q_tensor, p_tensor
|
1067 |
-
|
1068 |
-
# def train(
|
1069 |
-
# self,
|
1070 |
-
# q_pad: tf.Tensor,
|
1071 |
-
# p_pad: tf.Tensor,
|
1072 |
-
# epochs: int = 20,
|
1073 |
-
# batch_size: int = 16,
|
1074 |
-
# validation_split: float = 0.2,
|
1075 |
-
# checkpoint_dir: str = "checkpoints/",
|
1076 |
-
# use_lr_schedule: bool = True,
|
1077 |
-
# peak_lr: float = 2e-5,
|
1078 |
-
# warmup_steps_ratio: float = 0.1,
|
1079 |
-
# early_stopping_patience: int = 3,
|
1080 |
-
# min_delta: float = 1e-4
|
1081 |
-
# ):
|
1082 |
-
# dataset_size = tf.shape(q_pad)[0].numpy()
|
1083 |
-
# val_size = int(dataset_size * validation_split)
|
1084 |
-
# train_size = dataset_size - val_size
|
1085 |
-
|
1086 |
-
# logger.info(f"Total samples: {dataset_size}")
|
1087 |
-
# logger.info(f"Training samples: {train_size}")
|
1088 |
-
# logger.info(f"Validation samples: {val_size}")
|
1089 |
-
|
1090 |
-
# steps_per_epoch = train_size // batch_size
|
1091 |
-
# if train_size % batch_size != 0:
|
1092 |
-
# steps_per_epoch += 1
|
1093 |
-
# total_steps = steps_per_epoch * epochs
|
1094 |
-
# logger.info(f"Total training steps (approx): {total_steps}")
|
1095 |
-
|
1096 |
-
# # 1) Set up LR schedule or fixed LR
|
1097 |
-
# if use_lr_schedule:
|
1098 |
-
# warmup_steps = int(total_steps * warmup_steps_ratio)
|
1099 |
-
# lr_schedule = self._get_lr_schedule(
|
1100 |
-
# total_steps=total_steps,
|
1101 |
-
# peak_lr=peak_lr,
|
1102 |
-
# warmup_steps=warmup_steps
|
1103 |
-
# )
|
1104 |
-
# self.optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
|
1105 |
-
# logger.info("Using custom learning rate schedule.")
|
1106 |
-
# else:
|
1107 |
-
# self.optimizer = tf.keras.optimizers.Adam(learning_rate=peak_lr)
|
1108 |
-
# logger.info("Using fixed learning rate.")
|
1109 |
-
|
1110 |
-
# # 2) Prepare data splits
|
1111 |
-
# train_q = q_pad[:train_size]
|
1112 |
-
# train_p = p_pad[:train_size]
|
1113 |
-
# val_q = q_pad[train_size:]
|
1114 |
-
# val_p = p_pad[train_size:]
|
1115 |
-
|
1116 |
-
# train_dataset = tf.data.Dataset.from_tensor_slices((train_q, train_p))
|
1117 |
-
# train_dataset = train_dataset.shuffle(buffer_size=4096).batch(batch_size)
|
1118 |
-
|
1119 |
-
# val_dataset = tf.data.Dataset.from_tensor_slices((val_q, val_p))
|
1120 |
-
# val_dataset = val_dataset.batch(batch_size)
|
1121 |
-
|
1122 |
-
# # 3) Checkpoint + manager
|
1123 |
-
# checkpoint = tf.train.Checkpoint(optimizer=self.optimizer, model=self.encoder)
|
1124 |
-
# manager = tf.train.CheckpointManager(checkpoint, checkpoint_dir, max_to_keep=3)
|
1125 |
-
|
1126 |
-
# # 4) TensorBoard setup
|
1127 |
-
# log_dir = Path(checkpoint_dir) / "tensorboard_logs"
|
1128 |
-
# log_dir.mkdir(parents=True, exist_ok=True)
|
1129 |
-
|
1130 |
-
# current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
1131 |
-
# train_log_dir = str(log_dir / f"train_{current_time}")
|
1132 |
-
# val_log_dir = str(log_dir / f"val_{current_time}")
|
1133 |
-
|
1134 |
-
# train_summary_writer = tf.summary.create_file_writer(train_log_dir)
|
1135 |
-
# val_summary_writer = tf.summary.create_file_writer(val_log_dir)
|
1136 |
-
|
1137 |
-
# logger.info(f"TensorBoard logs will be saved in {log_dir}")
|
1138 |
-
|
1139 |
-
# # 5) Early stopping
|
1140 |
-
# best_val_loss = float("inf")
|
1141 |
-
# epochs_no_improve = 0
|
1142 |
-
|
1143 |
-
# logger.info("Beginning training loop...")
|
1144 |
-
# global_step = 0
|
1145 |
-
|
1146 |
-
# from tqdm import tqdm
|
1147 |
-
# for epoch in range(1, epochs + 1):
|
1148 |
-
# logger.info(f"\n=== Epoch {epoch}/{epochs} ===")
|
1149 |
-
# epoch_loss_avg = tf.keras.metrics.Mean()
|
1150 |
-
|
1151 |
-
# # Training loop
|
1152 |
-
# with tqdm(total=steps_per_epoch, desc=f"Training Epoch {epoch}") as pbar:
|
1153 |
-
# for (q_batch, p_batch) in train_dataset:
|
1154 |
-
# global_step += 1
|
1155 |
-
|
1156 |
-
# # Train step
|
1157 |
-
# batch_loss = self._train_step(q_batch, p_batch)
|
1158 |
-
# epoch_loss_avg(batch_loss)
|
1159 |
-
|
1160 |
-
# # Get current LR
|
1161 |
-
# if use_lr_schedule:
|
1162 |
-
# lr = self.optimizer.learning_rate
|
1163 |
-
# if isinstance(lr, tf.keras.optimizers.schedules.LearningRateSchedule):
|
1164 |
-
# # Get the current step
|
1165 |
-
# current_step = tf.cast(self.optimizer.iterations, tf.float32)
|
1166 |
-
# # Compute the current learning rate
|
1167 |
-
# current_lr = lr(current_step)
|
1168 |
-
# else:
|
1169 |
-
# # If learning_rate is not a schedule, use it directly
|
1170 |
-
# current_lr = lr
|
1171 |
-
# # Convert to float for logging
|
1172 |
-
# current_lr_value = float(current_lr.numpy())
|
1173 |
-
# else:
|
1174 |
-
# # If using fixed learning rate
|
1175 |
-
# current_lr_value = float(self.optimizer.learning_rate.numpy())
|
1176 |
-
|
1177 |
-
# # Update tqdm
|
1178 |
-
# pbar.update(1)
|
1179 |
-
# pbar.set_postfix({
|
1180 |
-
# "loss": f"{batch_loss.numpy():.4f}",
|
1181 |
-
# "lr": f"{current_lr_value:.2e}"
|
1182 |
-
# })
|
1183 |
-
|
1184 |
-
# # TensorBoard: log train metrics per step
|
1185 |
-
# with train_summary_writer.as_default():
|
1186 |
-
# tf.summary.scalar("loss", batch_loss, step=global_step)
|
1187 |
-
# tf.summary.scalar("learning_rate", current_lr_value, step=global_step)
|
1188 |
-
|
1189 |
-
# # Validation
|
1190 |
-
# val_loss_avg = tf.keras.metrics.Mean()
|
1191 |
-
# for q_val, p_val in val_dataset:
|
1192 |
-
# q_enc = self.encoder(q_val, training=False)
|
1193 |
-
# p_enc = self.encoder(p_val, training=False)
|
1194 |
-
# sim_matrix = tf.matmul(q_enc, p_enc, transpose_b=True)
|
1195 |
-
# bs_val = tf.shape(q_enc)[0]
|
1196 |
-
# labels_val = tf.range(bs_val, dtype=tf.int32)
|
1197 |
-
# loss_val = tf.nn.sparse_softmax_cross_entropy_with_logits(
|
1198 |
-
# labels=labels_val,
|
1199 |
-
# logits=sim_matrix
|
1200 |
-
# )
|
1201 |
-
# val_loss_avg(tf.reduce_mean(loss_val))
|
1202 |
-
|
1203 |
-
# train_loss = epoch_loss_avg.result().numpy()
|
1204 |
-
# val_loss = val_loss_avg.result().numpy()
|
1205 |
-
|
1206 |
-
# logger.info(f"Epoch {epoch} Complete: Train Loss={train_loss:.4f}, Val Loss={val_loss:.4f}")
|
1207 |
-
|
1208 |
-
# # TensorBoard: validation loss
|
1209 |
-
# with val_summary_writer.as_default():
|
1210 |
-
# tf.summary.scalar("val_loss", val_loss, step=epoch)
|
1211 |
-
|
1212 |
-
# # Save checkpoint
|
1213 |
-
# manager.save()
|
1214 |
-
|
1215 |
-
# # Update history
|
1216 |
-
# self.history['train_loss'].append(train_loss)
|
1217 |
-
# self.history['val_loss'].append(val_loss)
|
1218 |
-
# self.history.setdefault('learning_rate', []).append(float(current_lr_value))
|
1219 |
-
|
1220 |
-
# # Early stopping
|
1221 |
-
# if val_loss < best_val_loss - min_delta:
|
1222 |
-
# best_val_loss = val_loss
|
1223 |
-
# epochs_no_improve = 0
|
1224 |
-
# logger.info(f"Validation loss improved to {val_loss:.4f}. Reset patience.")
|
1225 |
-
# else:
|
1226 |
-
# epochs_no_improve += 1
|
1227 |
-
# logger.info(f"No improvement this epoch. Patience: {epochs_no_improve}/{early_stopping_patience}")
|
1228 |
-
# if epochs_no_improve >= early_stopping_patience:
|
1229 |
-
# logger.info("Early stopping triggered.")
|
1230 |
-
# break
|
1231 |
-
|
1232 |
-
# logger.info("In-batch training completed!")
|
1233 |
-
|
1234 |
-
# @tf.function
|
1235 |
-
# def _train_step(self, q_batch, p_batch):
|
1236 |
-
# """
|
1237 |
-
# Single training step using in-batch negatives.
|
1238 |
-
# q_batch: (batch_size, seq_len) int32 input_ids for queries
|
1239 |
-
# p_batch: (batch_size, seq_len) int32 input_ids for positives
|
1240 |
-
# """
|
1241 |
-
# with tf.GradientTape() as tape:
|
1242 |
-
# # Encode queries and positives
|
1243 |
-
# q_enc = self.encoder(q_batch, training=True) # [B, emb_dim]
|
1244 |
-
# p_enc = self.encoder(p_batch, training=True) # [B, emb_dim]
|
1245 |
-
|
1246 |
-
# # Compute similarity matrix: (B, B) = q_enc * p_enc^T
|
1247 |
-
# # If embeddings are L2-normalized, this is cosine similarity
|
1248 |
-
# sim_matrix = tf.matmul(q_enc, p_enc, transpose_b=True) # [B, B]
|
1249 |
-
|
1250 |
-
# # Labels are just the diagonal indices
|
1251 |
-
# batch_size = tf.shape(q_enc)[0]
|
1252 |
-
# labels = tf.range(batch_size, dtype=tf.int32) # [0..B-1]
|
1253 |
-
|
1254 |
-
# # Softmax cross-entropy
|
1255 |
-
# loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
|
1256 |
-
# labels=labels,
|
1257 |
-
# logits=sim_matrix
|
1258 |
-
# )
|
1259 |
-
# loss = tf.reduce_mean(loss)
|
1260 |
-
|
1261 |
-
# # Compute gradients for the pretrained DistilBERT variables only
|
1262 |
-
# train_vars = self.encoder.pretrained.trainable_variables
|
1263 |
-
# gradients = tape.gradient(loss, train_vars)
|
1264 |
|
1265 |
-
|
1266 |
-
|
1267 |
-
|
1268 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1269 |
|
1270 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
from transformers import TFAutoModel, AutoTokenizer
|
3 |
import tensorflow as tf
|
4 |
import numpy as np
|
5 |
+
import threading
|
6 |
+
from queue import Queue, Empty
|
7 |
+
from typing import Generator, List, Tuple, Dict, Optional, Union, Any
|
8 |
import math
|
9 |
from dataclasses import dataclass
|
10 |
import json
|
|
|
11 |
from pathlib import Path
|
12 |
import datetime
|
13 |
import faiss
|
14 |
+
import gc
|
15 |
+
import random
|
16 |
from response_quality_checker import ResponseQualityChecker
|
17 |
from cross_encoder_reranker import CrossEncoderReranker
|
18 |
from conversation_summarizer import DeviceAwareModel, Summarizer
|
19 |
+
from gpu_monitor import GPUMemoryMonitor
|
20 |
+
import absl.logging
|
21 |
from logger_config import config_logger
|
22 |
+
from tqdm.auto import tqdm
|
23 |
+
|
24 |
+
absl.logging.set_verbosity(absl.logging.WARNING)
|
25 |
logger = config_logger(__name__)
|
26 |
|
27 |
@dataclass
|
28 |
class ChatbotConfig:
|
29 |
"""Configuration for the RetrievalChatbot."""
|
30 |
+
vocab_size: int = 30526 # DistilBERT vocab size + special tokens
|
31 |
max_context_token_limit: int = 512
|
32 |
+
embedding_dim: int = 512
|
33 |
encoder_units: int = 256
|
34 |
num_attention_heads: int = 8
|
35 |
dropout_rate: float = 0.2
|
|
|
139 |
summarizer = Summarizer(device=self.device)
|
140 |
self.summarizer = summarizer
|
141 |
|
142 |
+
# # Configure XLA optimization if on GPU/TPU
|
143 |
+
# if self.device in ["GPU", "TPU"]:
|
144 |
+
# tf.config.optimizer.set_jit(True)
|
145 |
+
# logger.info(f"XLA compilation enabled for {self.device}")
|
146 |
|
147 |
+
# # Configure mixed precision for GPU/TPU
|
148 |
+
# if self.device != "CPU":
|
149 |
+
# policy = tf.keras.mixed_precision.Policy('mixed_float16')
|
150 |
+
# tf.keras.mixed_precision.set_global_policy(policy)
|
151 |
+
# logger.info("Mixed precision training enabled (float16)")
|
152 |
|
153 |
# Special tokens
|
154 |
self.special_tokens = {
|
|
|
164 |
{'additional_special_tokens': list(self.special_tokens.values())}
|
165 |
)
|
166 |
|
167 |
+
self.memory_monitor = GPUMemoryMonitor()
|
168 |
+
self.min_batch_size = 8
|
169 |
+
self.max_batch_size = 128
|
170 |
+
self.current_batch_size = 32
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
+
# Collect unique responses from dialogues
|
173 |
+
self.response_pool, self.unique_responses = self._collect_responses(dialogues)
|
174 |
|
175 |
# Initialize training history
|
176 |
self.history = {
|
|
|
180 |
"val_metrics": {}
|
181 |
}
|
182 |
|
183 |
+
def build_models(self):
|
184 |
"""Initialize the shared encoder."""
|
185 |
logger.info("Building encoder model...")
|
186 |
+
tf.keras.backend.clear_session()
|
187 |
|
188 |
# Shared encoder for both queries and responses
|
189 |
self.encoder = EncoderModel(
|
|
|
196 |
self.encoder.pretrained.resize_token_embeddings(new_vocab_size)
|
197 |
logger.info(f"Token embeddings resized to: {new_vocab_size}")
|
198 |
|
199 |
+
# Initialize FAISS index (moved here from __init__)
|
200 |
+
self._initialize_faiss()
|
201 |
+
# Compute embeddings after FAISS is initialized and moved
|
202 |
+
self._compute_and_index_embeddings()
|
|
|
203 |
|
204 |
# Try different ways to get embedding dimension
|
205 |
try:
|
|
|
231 |
logger.error("Vocabulary size is less than embedding dimension.")
|
232 |
raise ValueError("Vocabulary size is less than embedding dimension.")
|
233 |
|
234 |
+
def _collect_responses(self, dialogues: List[dict]) -> Tuple[List[str], List[str]]:
|
235 |
+
"""Collect all unique responses from dialogues."""
|
236 |
+
logger.info("Collecting responses from dialogues...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
|
|
238 |
responses = []
|
239 |
+
try:
|
240 |
+
progress_bar = tqdm(dialogues, desc="Collecting assistant responses")
|
241 |
+
except ImportError:
|
242 |
+
progress_bar = dialogues
|
243 |
+
logger.info("Progress bar disabled - continuing without visual progress")
|
244 |
+
|
245 |
+
for dialogue in progress_bar:
|
246 |
turns = dialogue.get('turns', [])
|
247 |
for turn in turns:
|
248 |
if turn.get('speaker') == 'assistant' and 'text' in turn:
|
|
|
252 |
unique_responses = list(set(responses))
|
253 |
logger.info(f"Found {len(unique_responses)} unique responses.")
|
254 |
|
255 |
+
return responses, unique_responses
|
256 |
+
|
257 |
+
def _adjust_batch_size(self) -> None:
|
258 |
+
"""Dynamically adjust batch size based on GPU memory usage."""
|
259 |
+
if self.memory_monitor.should_reduce_batch_size():
|
260 |
+
new_size = max(self.min_batch_size, self.current_batch_size // 2)
|
261 |
+
if new_size != self.current_batch_size:
|
262 |
+
logger.info(f"Reducing batch size to {new_size} due to high memory usage")
|
263 |
+
self.current_batch_size = new_size
|
264 |
+
gc.collect()
|
265 |
+
if tf.config.list_physical_devices('GPU'):
|
266 |
+
tf.keras.backend.clear_session()
|
267 |
+
elif self.memory_monitor.can_increase_batch_size():
|
268 |
+
new_size = min(self.max_batch_size, self.current_batch_size * 2)
|
269 |
+
if new_size != self.current_batch_size:
|
270 |
+
logger.info(f"Increasing batch size to {new_size}")
|
271 |
+
self.current_batch_size = new_size
|
272 |
+
|
273 |
+
def _initialize_faiss(self):
|
274 |
+
"""Initialize FAISS with safer GPU handling and memory monitoring."""
|
275 |
+
logger.info("Initializing FAISS index...")
|
276 |
|
277 |
+
# First, detect if we have GPU-enabled FAISS
|
278 |
+
self.faiss_gpu = False
|
279 |
+
self.gpu_resources = []
|
280 |
|
281 |
+
try:
|
282 |
+
if hasattr(faiss, 'get_num_gpus'):
|
283 |
+
ngpus = faiss.get_num_gpus()
|
284 |
+
if ngpus > 0:
|
285 |
+
# Configure GPU resources with memory limit
|
286 |
+
for i in range(ngpus):
|
287 |
+
res = faiss.StandardGpuResources()
|
288 |
+
# Set temp memory to 1/4 of total memory to avoid OOM
|
289 |
+
if self.memory_monitor.has_gpu:
|
290 |
+
stats = self.memory_monitor.get_memory_stats()
|
291 |
+
if stats:
|
292 |
+
temp_memory = int(stats.total * 0.25) # 25% of total memory
|
293 |
+
res.setTempMemory(temp_memory)
|
294 |
+
self.gpu_resources.append(res)
|
295 |
+
self.faiss_gpu = True
|
296 |
+
logger.info(f"FAISS GPU resources initialized on {ngpus} GPUs")
|
297 |
+
else:
|
298 |
+
logger.info("Using CPU-only FAISS build")
|
299 |
+
|
300 |
+
except Exception as e:
|
301 |
+
logger.warning(f"Using CPU due to GPU initialization error: {e}")
|
302 |
|
303 |
+
# TODO: figure out buf with faiss-gpu
|
304 |
+
try:
|
305 |
+
# Create appropriate index based on dataset size
|
306 |
+
if len(self.unique_responses) < 1000:
|
307 |
+
logger.info("Small dataset detected, using simple FlatIP index")
|
308 |
+
self.index = faiss.IndexFlatIP(self.config.embedding_dim)
|
309 |
+
else:
|
310 |
+
# Use IVF index with dynamic number of clusters
|
311 |
+
# nlist = min(
|
312 |
+
# 25, # max clusters
|
313 |
+
# max(int(math.sqrt(len(self.unique_responses))), 1) # min 1 cluster
|
314 |
+
# )
|
315 |
+
# logger.info(f"Using IVF index with {nlist} clusters")
|
316 |
+
|
317 |
+
# quantizer = faiss.IndexFlatIP(self.config.embedding_dim)
|
318 |
+
# self.index = faiss.IndexIVFFlat(
|
319 |
+
# quantizer,
|
320 |
+
# self.config.embedding_dim,
|
321 |
+
# nlist,
|
322 |
+
# faiss.METRIC_INNER_PRODUCT
|
323 |
+
# )
|
324 |
+
self.index = faiss.IndexFlatIP(self.config.embedding_dim)
|
325 |
+
|
326 |
+
# # Move to GPU(s) if available
|
327 |
+
# if self.faiss_gpu and self.gpu_resources:
|
328 |
+
# try:
|
329 |
+
# if len(self.gpu_resources) > 1:
|
330 |
+
# self.index = faiss.index_cpu_to_gpus_list(self.index, self.gpu_resources)
|
331 |
+
# logger.info("FAISS index distributed across multiple GPUs")
|
332 |
+
# else:
|
333 |
+
# self.index = faiss.index_cpu_to_gpu(self.gpu_resources[0], 0, self.index)
|
334 |
+
# logger.info("FAISS index moved to single GPU")
|
335 |
+
# except Exception as e:
|
336 |
+
# logger.warning(f"Failed to move index to GPU: {e}. Falling back to CPU")
|
337 |
+
# self.faiss_gpu = False
|
338 |
+
|
339 |
+
# # Set search parameters for IVF index
|
340 |
+
# if isinstance(self.index, faiss.IndexIVFFlat):
|
341 |
+
# self.index.nprobe = min(10, nlist)
|
342 |
+
|
343 |
+
except Exception as e:
|
344 |
+
logger.error(f"Error initializing FAISS: {e}")
|
345 |
+
raise
|
346 |
|
347 |
def encode_responses(
|
348 |
self,
|
|
|
350 |
batch_size: int = 64
|
351 |
) -> tf.Tensor:
|
352 |
"""
|
353 |
+
Encodes responses with more conservative memory management.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
354 |
"""
|
|
|
355 |
all_embeddings = []
|
356 |
+
self.current_batch_size = batch_size
|
357 |
+
|
358 |
+
# Memory stats
|
359 |
+
# if self.memory_monitor.has_gpu:
|
360 |
+
# initial_stats = self.memory_monitor.get_memory_stats()
|
361 |
+
# if initial_stats:
|
362 |
+
# logger.info("Initial GPU memory state:")
|
363 |
+
# logger.info(f"Total: {initial_stats.total / 1e9:.2f}GB")
|
364 |
+
# logger.info(f"Used: {initial_stats.used / 1e9:.2f}GB")
|
365 |
+
# logger.info(f"Free: {initial_stats.free / 1e9:.2f}GB")
|
366 |
+
|
367 |
+
total_processed = 0
|
368 |
+
|
369 |
+
with tqdm(total=len(responses), desc="Encoding responses") as pbar:
|
370 |
+
while total_processed < len(responses):
|
371 |
+
# Monitor memory and adjust batch size
|
372 |
+
if self.memory_monitor.has_gpu:
|
373 |
+
gpu_usage = self.memory_monitor.get_memory_usage()
|
374 |
+
if gpu_usage > 0.8: # Over 80% usage
|
375 |
+
self.current_batch_size = max(128, self.current_batch_size // 2)
|
376 |
+
logger.info(f"High GPU memory usage ({gpu_usage:.1%}), reducing batch size to {self.current_batch_size}")
|
377 |
+
gc.collect()
|
378 |
+
tf.keras.backend.clear_session()
|
379 |
+
|
380 |
+
# Get batch
|
381 |
+
end_idx = min(total_processed + self.current_batch_size, len(responses))
|
382 |
+
batch_texts = responses[total_processed:end_idx]
|
383 |
+
|
384 |
+
try:
|
385 |
+
# Tokenize
|
386 |
+
encodings = self.tokenizer(
|
387 |
+
batch_texts,
|
388 |
+
padding='max_length',
|
389 |
+
truncation=True,
|
390 |
+
max_length=self.config.max_context_token_limit,
|
391 |
+
return_tensors='tf'
|
392 |
+
)
|
393 |
|
394 |
+
# Encode
|
395 |
+
embeddings_batch = self.encoder(encodings['input_ids'], training=False)
|
396 |
+
|
397 |
+
# Cast to float32
|
398 |
+
if embeddings_batch.dtype != tf.float32:
|
399 |
+
embeddings_batch = tf.cast(embeddings_batch, tf.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
|
401 |
+
# Store
|
402 |
+
all_embeddings.append(embeddings_batch)
|
403 |
+
|
404 |
+
# Update progress
|
405 |
+
batch_processed = len(batch_texts)
|
406 |
+
total_processed += batch_processed
|
407 |
+
|
408 |
+
# Update progress bar
|
409 |
+
if self.memory_monitor.has_gpu:
|
410 |
+
gpu_usage = self.memory_monitor.get_memory_usage()
|
411 |
+
pbar.set_postfix({
|
412 |
+
'GPU mem': f'{gpu_usage:.1%}',
|
413 |
+
'batch_size': self.current_batch_size
|
414 |
+
})
|
415 |
+
pbar.update(batch_processed)
|
416 |
+
|
417 |
+
# Memory cleanup every 1000 samples
|
418 |
+
if total_processed % 1000 == 0:
|
419 |
+
gc.collect()
|
420 |
+
if tf.config.list_physical_devices('GPU'):
|
421 |
+
tf.keras.backend.clear_session()
|
422 |
+
|
423 |
+
except tf.errors.ResourceExhaustedError:
|
424 |
+
logger.warning("GPU memory exhausted during encoding, reducing batch size")
|
425 |
+
self.current_batch_size = max(8, self.current_batch_size // 2)
|
426 |
+
continue
|
427 |
+
|
428 |
+
except Exception as e:
|
429 |
+
logger.error(f"Error during encoding: {str(e)}")
|
430 |
+
raise
|
431 |
|
432 |
+
# Concatenate results
|
433 |
+
#logger.info("Concatenating embeddings...")
|
434 |
if len(all_embeddings) == 1:
|
|
|
435 |
final_embeddings = all_embeddings[0]
|
436 |
else:
|
|
|
437 |
final_embeddings = tf.concat(all_embeddings, axis=0)
|
438 |
|
439 |
return final_embeddings
|
440 |
|
441 |
+
def _train_faiss_index(self, response_embeddings: np.ndarray) -> None:
|
442 |
+
"""Train FAISS index with better memory management and robust fallback mechanisms."""
|
443 |
+
if self.index.is_trained:
|
444 |
+
logger.info("Index already trained, skipping training phase")
|
445 |
+
return
|
446 |
+
|
447 |
+
logger.info("Starting FAISS index training...")
|
448 |
+
|
449 |
+
try:
|
450 |
+
# First attempt: Try training with smaller subset
|
451 |
+
subset_size = min(5000, len(response_embeddings)) # Reduced from 10000
|
452 |
+
logger.info(f"Using {subset_size} samples for initial training attempt")
|
453 |
+
subset_idx = np.random.choice(len(response_embeddings), subset_size, replace=False)
|
454 |
+
training_embeddings = response_embeddings[subset_idx].copy() # Make a copy
|
455 |
+
|
456 |
+
# Ensure contiguous memory layout
|
457 |
+
training_embeddings = np.ascontiguousarray(training_embeddings)
|
458 |
+
|
459 |
+
# Force cleanup before training
|
460 |
+
gc.collect()
|
461 |
+
if tf.config.list_physical_devices('GPU'):
|
462 |
+
tf.keras.backend.clear_session()
|
463 |
+
|
464 |
+
# Verify data properties
|
465 |
+
logger.info(f"FAISS training data shape: {training_embeddings.shape}")
|
466 |
+
logger.info(f"FAISS training data dtype: {training_embeddings.dtype}")
|
467 |
+
|
468 |
+
logger.info("Starting initial training attempt...")
|
469 |
+
self.index.train(training_embeddings)
|
470 |
+
logger.info("Training completed successfully")
|
471 |
+
|
472 |
+
except (RuntimeError, Exception) as e:
|
473 |
+
logger.warning(f"Initial training attempt failed: {str(e)}")
|
474 |
+
logger.info("Attempting fallback strategy...")
|
475 |
+
|
476 |
+
try:
|
477 |
+
# Move to CPU for more stable training
|
478 |
+
if self.faiss_gpu:
|
479 |
+
logger.info("Moving index to CPU for fallback training")
|
480 |
+
cpu_index = faiss.index_gpu_to_cpu(self.index)
|
481 |
+
else:
|
482 |
+
cpu_index = self.index
|
483 |
+
|
484 |
+
# Create simpler index type if needed
|
485 |
+
if isinstance(cpu_index, faiss.IndexIVFFlat):
|
486 |
+
logger.info("Creating simpler FlatL2 index for fallback")
|
487 |
+
cpu_index = faiss.IndexFlatL2(self.config.embedding_dim)
|
488 |
+
|
489 |
+
# Use even smaller subset for CPU training
|
490 |
+
subset_size = min(2000, len(response_embeddings))
|
491 |
+
subset_idx = np.random.choice(len(response_embeddings), subset_size, replace=False)
|
492 |
+
fallback_embeddings = response_embeddings[subset_idx].copy()
|
493 |
+
|
494 |
+
# Ensure data is properly formatted
|
495 |
+
if not fallback_embeddings.flags['C_CONTIGUOUS']:
|
496 |
+
fallback_embeddings = np.ascontiguousarray(fallback_embeddings)
|
497 |
+
if fallback_embeddings.dtype != np.float32:
|
498 |
+
fallback_embeddings = fallback_embeddings.astype(np.float32)
|
499 |
+
|
500 |
+
# Train on CPU
|
501 |
+
logger.info("Training fallback index on CPU...")
|
502 |
+
cpu_index.train(fallback_embeddings)
|
503 |
+
|
504 |
+
# Move back to GPU if needed
|
505 |
+
if self.faiss_gpu:
|
506 |
+
logger.info("Moving trained index back to GPU...")
|
507 |
+
if len(self.gpu_resources) > 1:
|
508 |
+
self.index = faiss.index_cpu_to_gpus_list(cpu_index, self.gpu_resources)
|
509 |
+
else:
|
510 |
+
self.index = faiss.index_cpu_to_gpu(self.gpu_resources[0], 0, cpu_index)
|
511 |
+
else:
|
512 |
+
self.index = cpu_index
|
513 |
+
|
514 |
+
logger.info("Fallback training completed successfully")
|
515 |
+
|
516 |
+
except Exception as e2:
|
517 |
+
logger.error(f"Fallback training also failed: {str(e2)}")
|
518 |
+
logger.warning("Creating basic brute-force index as last resort")
|
519 |
+
|
520 |
+
try:
|
521 |
+
# Create basic brute-force index as last resort
|
522 |
+
dim = response_embeddings.shape[1]
|
523 |
+
basic_index = faiss.IndexFlatL2(dim)
|
524 |
+
|
525 |
+
if self.faiss_gpu:
|
526 |
+
if len(self.gpu_resources) > 1:
|
527 |
+
self.index = faiss.index_cpu_to_gpus_list(basic_index, self.gpu_resources)
|
528 |
+
else:
|
529 |
+
self.index = faiss.index_cpu_to_gpu(self.gpu_resources[0], 0, basic_index)
|
530 |
+
else:
|
531 |
+
self.index = basic_index
|
532 |
+
|
533 |
+
logger.info("Basic index created as fallback")
|
534 |
+
|
535 |
+
except Exception as e3:
|
536 |
+
logger.error(f"All training attempts failed: {str(e3)}")
|
537 |
+
raise RuntimeError("Unable to create working FAISS index")
|
538 |
+
|
539 |
+
def _add_vectors_to_index(self, response_embeddings: np.ndarray) -> None:
|
540 |
+
"""Add vectors to FAISS index with enhanced memory management."""
|
541 |
+
logger.info("Starting vector addition process...")
|
542 |
+
|
543 |
+
# Even smaller batches
|
544 |
+
initial_batch_size = 50 # Start smaller
|
545 |
+
min_batch_size = 10
|
546 |
+
max_batch_size = 500 # Lower maximum
|
547 |
+
|
548 |
+
total_added = 0
|
549 |
+
retry_count = 0
|
550 |
+
max_retries = 5
|
551 |
+
|
552 |
+
while total_added < len(response_embeddings):
|
553 |
+
try:
|
554 |
+
# Monitor memory
|
555 |
+
if self.memory_monitor.has_gpu:
|
556 |
+
gpu_usage = self.memory_monitor.get_memory_usage()
|
557 |
+
#logger.info(f"GPU memory usage before batch: {gpu_usage:.1%}")
|
558 |
+
|
559 |
+
# Force cleanup if memory usage is high
|
560 |
+
if gpu_usage > 0.7: # Lower threshold to 70%
|
561 |
+
logger.info("High memory usage detected, forcing cleanup")
|
562 |
+
gc.collect()
|
563 |
+
tf.keras.backend.clear_session()
|
564 |
+
|
565 |
+
# Get batch
|
566 |
+
end_idx = min(total_added + initial_batch_size, len(response_embeddings))
|
567 |
+
batch = response_embeddings[total_added:end_idx]
|
568 |
+
|
569 |
+
# Add batch
|
570 |
+
self.index.add(batch)
|
571 |
+
|
572 |
+
# Update progress
|
573 |
+
batch_size = len(batch)
|
574 |
+
total_added += batch_size
|
575 |
+
#logger.info(f"Added batch of {batch_size} vectors ({total_added}/{len(response_embeddings)} total)")
|
576 |
+
|
577 |
+
# Memory cleanup every few batches
|
578 |
+
if total_added % (initial_batch_size * 5) == 0:
|
579 |
+
gc.collect()
|
580 |
+
if tf.config.list_physical_devices('GPU'):
|
581 |
+
tf.keras.backend.clear_session()
|
582 |
+
|
583 |
+
# Gradually increase batch size
|
584 |
+
if initial_batch_size < max_batch_size:
|
585 |
+
initial_batch_size = min(initial_batch_size + 25, max_batch_size)
|
586 |
+
|
587 |
+
except Exception as e:
|
588 |
+
logger.warning(f"Error adding batch: {str(e)}")
|
589 |
+
retry_count += 1
|
590 |
+
|
591 |
+
if retry_count > max_retries:
|
592 |
+
logger.error("Max retries exceeded.")
|
593 |
+
raise
|
594 |
+
|
595 |
+
# Reduce batch size
|
596 |
+
initial_batch_size = max(min_batch_size, initial_batch_size // 2)
|
597 |
+
logger.info(f"Reducing batch size to {initial_batch_size} and retrying...")
|
598 |
+
|
599 |
+
# Cleanup
|
600 |
+
gc.collect()
|
601 |
+
if tf.config.list_physical_devices('GPU'):
|
602 |
+
tf.keras.backend.clear_session()
|
603 |
+
|
604 |
+
time.sleep(1) # Brief pause before retry
|
605 |
+
|
606 |
+
logger.info(f"Successfully added all {total_added} vectors to index")
|
607 |
+
|
608 |
+
def _add_vectors_cpu_fallback(self, remaining_embeddings: np.ndarray, already_added: int = 0) -> None:
|
609 |
+
"""CPU fallback with extra safeguards and progress tracking."""
|
610 |
+
logger.info(f"CPU Fallback: Adding {len(remaining_embeddings)} remaining vectors...")
|
611 |
+
|
612 |
+
try:
|
613 |
+
# Move index to CPU
|
614 |
+
if self.faiss_gpu:
|
615 |
+
logger.info("Moving index to CPU...")
|
616 |
+
cpu_index = faiss.index_gpu_to_cpu(self.index)
|
617 |
+
else:
|
618 |
+
cpu_index = self.index
|
619 |
+
|
620 |
+
# Add remaining vectors on CPU with very small batches
|
621 |
+
batch_size = 50 # Extremely conservative batch size for CPU
|
622 |
+
total_added = already_added
|
623 |
+
|
624 |
+
for i in range(0, len(remaining_embeddings), batch_size):
|
625 |
+
end_idx = min(i + batch_size, len(remaining_embeddings))
|
626 |
+
batch = remaining_embeddings[i:end_idx]
|
627 |
+
|
628 |
+
# Add batch
|
629 |
+
cpu_index.add(batch)
|
630 |
+
|
631 |
+
# Update progress
|
632 |
+
total_added += len(batch)
|
633 |
+
if i % (batch_size * 10) == 0:
|
634 |
+
logger.info(f"Added {total_added} vectors total "
|
635 |
+
f"({i}/{len(remaining_embeddings)} in current phase)")
|
636 |
+
|
637 |
+
# Periodic cleanup
|
638 |
+
if i % (batch_size * 20) == 0:
|
639 |
+
gc.collect()
|
640 |
+
|
641 |
+
# Move back to GPU if needed
|
642 |
+
if self.faiss_gpu:
|
643 |
+
logger.info("Moving index back to GPU...")
|
644 |
+
if len(self.gpu_resources) > 1:
|
645 |
+
self.index = faiss.index_cpu_to_gpus_list(cpu_index, self.gpu_resources)
|
646 |
+
else:
|
647 |
+
self.index = faiss.index_cpu_to_gpu(self.gpu_resources[0], 0, cpu_index)
|
648 |
+
else:
|
649 |
+
self.index = cpu_index
|
650 |
+
|
651 |
+
logger.info("CPU fallback completed successfully")
|
652 |
+
|
653 |
+
except Exception as e:
|
654 |
+
logger.error(f"Error during CPU fallback: {str(e)}")
|
655 |
+
raise
|
656 |
+
|
657 |
+
def _compute_and_index_embeddings(self):
|
658 |
+
"""Compute embeddings and build FAISS index with simpler handling."""
|
659 |
+
logger.info("Computing embeddings and indexing with FAISS...")
|
660 |
+
|
661 |
+
try:
|
662 |
+
# Encode responses with memory monitoring
|
663 |
+
logger.info("Encoding unique responses")
|
664 |
+
response_embeddings = self.encode_responses(self.unique_responses)
|
665 |
+
response_embeddings = response_embeddings.numpy()
|
666 |
+
|
667 |
+
# Memory cleanup after encoding
|
668 |
+
gc.collect()
|
669 |
+
if tf.config.list_physical_devices('GPU'):
|
670 |
+
tf.keras.backend.clear_session()
|
671 |
+
|
672 |
+
# Ensure float32 and memory contiguous
|
673 |
+
response_embeddings = response_embeddings.astype('float32')
|
674 |
+
response_embeddings = np.ascontiguousarray(response_embeddings)
|
675 |
+
|
676 |
+
# Log memory state before normalization
|
677 |
+
if self.memory_monitor.has_gpu:
|
678 |
+
stats = self.memory_monitor.get_memory_stats()
|
679 |
+
if stats:
|
680 |
+
logger.info(f"GPU memory before normalization: {stats.used/1e9:.2f}GB used")
|
681 |
+
|
682 |
+
# Normalize embeddings
|
683 |
+
logger.info("Normalizing embeddings with FAISS")
|
684 |
+
faiss.normalize_L2(response_embeddings)
|
685 |
+
|
686 |
+
# Create and initialize simple FlatIP index
|
687 |
+
dim = response_embeddings.shape[1]
|
688 |
+
if self.faiss_gpu:
|
689 |
+
cpu_index = faiss.IndexFlatIP(dim)
|
690 |
+
if len(self.gpu_resources) > 1:
|
691 |
+
self.index = faiss.index_cpu_to_gpus_list(cpu_index, self.gpu_resources)
|
692 |
+
else:
|
693 |
+
self.index = faiss.index_cpu_to_gpu(self.gpu_resources[0], 0, cpu_index)
|
694 |
+
else:
|
695 |
+
self.index = faiss.IndexFlatIP(dim)
|
696 |
+
|
697 |
+
# Add vectors to index
|
698 |
+
self._add_vectors_to_index(response_embeddings)
|
699 |
+
|
700 |
+
# Store responses and embeddings
|
701 |
+
self.response_pool = self.unique_responses
|
702 |
+
self.response_embeddings = response_embeddings
|
703 |
+
|
704 |
+
# Final memory cleanup
|
705 |
+
gc.collect()
|
706 |
+
if tf.config.list_physical_devices('GPU'):
|
707 |
+
tf.keras.backend.clear_session()
|
708 |
+
|
709 |
+
# Log final state
|
710 |
+
logger.info(f"Successfully indexed {self.index.ntotal} responses")
|
711 |
+
if self.memory_monitor.has_gpu:
|
712 |
+
stats = self.memory_monitor.get_memory_stats()
|
713 |
+
if stats:
|
714 |
+
logger.info(f"Final GPU memory usage: {stats.used/1e9:.2f}GB used")
|
715 |
+
|
716 |
+
logger.info("Indexing completed successfully")
|
717 |
+
|
718 |
+
except Exception as e:
|
719 |
+
logger.error(f"Error during indexing: {e}")
|
720 |
+
# Ensure cleanup even on error
|
721 |
+
gc.collect()
|
722 |
+
if tf.config.list_physical_devices('GPU'):
|
723 |
+
tf.keras.backend.clear_session()
|
724 |
+
raise
|
725 |
+
|
726 |
+
def verify_faiss_index(self):
|
727 |
+
"""Verify that FAISS index matches the response pool."""
|
728 |
+
indexed_size = self.index.ntotal
|
729 |
+
pool_size = len(self.response_pool)
|
730 |
+
logger.info(f"FAISS index size: {indexed_size}")
|
731 |
+
logger.info(f"Response pool size: {pool_size}")
|
732 |
+
if indexed_size != pool_size:
|
733 |
+
logger.warning("Mismatch between FAISS index size and response pool size.")
|
734 |
+
else:
|
735 |
+
logger.info("FAISS index correctly matches the response pool.")
|
736 |
+
|
737 |
def encode_query(self, query: str, context: Optional[List[Tuple[str, str]]] = None) -> tf.Tensor:
|
738 |
"""Encode a query with optional conversation context."""
|
739 |
# Prepare query with context
|
|
|
812 |
"""Retrieve top-k responses using FAISS."""
|
813 |
# Encode the query
|
814 |
q_emb = self.encode_query(query) # Shape: [1, embedding_dim]
|
815 |
+
q_emb_np = q_emb.numpy().astype('float32') # Ensure type match
|
816 |
|
817 |
# Normalize the query embedding for cosine similarity
|
818 |
faiss.normalize_L2(q_emb_np)
|
|
|
899 |
logger.info(f"Loaded {len(dialogues)} dialogues.")
|
900 |
return dialogues
|
901 |
|
902 |
+
def train_streaming(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
903 |
self,
|
904 |
+
dialogues: List[dict],
|
|
|
905 |
epochs: int = 20,
|
906 |
batch_size: int = 16,
|
907 |
validation_split: float = 0.2,
|
|
|
911 |
warmup_steps_ratio: float = 0.1,
|
912 |
early_stopping_patience: int = 3,
|
913 |
min_delta: float = 1e-4,
|
914 |
+
buffer_size: int = 10,
|
915 |
+
neg_samples: int = 1
|
916 |
+
) -> None:
|
917 |
+
"""
|
918 |
+
Streaming version of training that interleaves training/val batches by
|
919 |
+
giving priority to training until we meet `steps_per_epoch`, then
|
920 |
+
sending leftover batches to validation.
|
921 |
+
"""
|
922 |
+
logger.info("Starting streaming training pipeline...")
|
923 |
+
|
924 |
+
# Initialize dataset preparer
|
925 |
+
dataset_preparer = StreamingDataPipeline(
|
926 |
+
tokenizer=self.tokenizer,
|
927 |
+
encoder=self.encoder,
|
928 |
+
index=self.index,
|
929 |
+
response_pool=self.response_pool,
|
930 |
+
max_length=self.config.max_context_token_limit,
|
931 |
+
batch_size=batch_size,
|
932 |
+
neg_samples=neg_samples
|
933 |
+
)
|
934 |
|
935 |
+
# Calculate total steps for learning rate schedule
|
936 |
+
total_pairs = dataset_preparer.estimate_total_pairs(dialogues)
|
937 |
+
train_size = total_pairs * (1 - validation_split)
|
938 |
+
steps_per_epoch = int(math.ceil(train_size / batch_size))
|
939 |
+
val_steps = int(math.ceil((total_pairs * validation_split) / batch_size))
|
940 |
total_steps = steps_per_epoch * epochs
|
|
|
941 |
|
942 |
+
logger.info(f"Total pairs: {total_pairs}")
|
943 |
+
logger.info(f"Training pairs: {train_size}")
|
944 |
+
logger.info(f"Steps per epoch: {steps_per_epoch}")
|
945 |
+
logger.info(f"Validation steps: {val_steps}")
|
946 |
+
logger.info(f"Total steps: {total_steps}")
|
947 |
+
|
948 |
+
# Set up optimizer with learning rate schedule
|
949 |
if use_lr_schedule:
|
950 |
warmup_steps = int(total_steps * warmup_steps_ratio)
|
951 |
lr_schedule = self._get_lr_schedule(
|
|
|
959 |
self.optimizer = tf.keras.optimizers.Adam(learning_rate=peak_lr)
|
960 |
logger.info("Using fixed learning rate.")
|
961 |
|
962 |
+
# Initialize checkpoint manager
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
963 |
checkpoint = tf.train.Checkpoint(optimizer=self.optimizer, model=self.encoder)
|
964 |
manager = tf.train.CheckpointManager(checkpoint, checkpoint_dir, max_to_keep=3)
|
965 |
|
966 |
+
# Setup TensorBoard
|
967 |
log_dir = Path(checkpoint_dir) / "tensorboard_logs"
|
968 |
log_dir.mkdir(parents=True, exist_ok=True)
|
|
|
969 |
current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
970 |
train_log_dir = str(log_dir / f"train_{current_time}")
|
971 |
val_log_dir = str(log_dir / f"val_{current_time}")
|
|
|
972 |
train_summary_writer = tf.summary.create_file_writer(train_log_dir)
|
973 |
val_summary_writer = tf.summary.create_file_writer(val_log_dir)
|
974 |
+
|
975 |
logger.info(f"TensorBoard logs will be saved in {log_dir}")
|
976 |
|
977 |
+
# Training loop
|
978 |
best_val_loss = float("inf")
|
979 |
epochs_no_improve = 0
|
980 |
|
981 |
+
try:
|
982 |
+
epoch_pbar = tqdm(range(1, epochs + 1), desc="Training", unit="epoch")
|
983 |
+
is_tqdm_epoch = True
|
984 |
+
except ImportError:
|
985 |
+
epoch_pbar = range(1, epochs + 1)
|
986 |
+
is_tqdm_epoch = False
|
987 |
+
logger.info("Epoch progress bar disabled - continuing without visual progress")
|
988 |
+
|
989 |
+
for epoch in epoch_pbar:
|
990 |
+
# Shared queues for streaming pipeline
|
991 |
+
train_queue = Queue(maxsize=buffer_size)
|
992 |
+
val_queue = Queue(maxsize=buffer_size)
|
993 |
+
stop_flag = threading.Event()
|
994 |
+
|
995 |
+
def data_pipeline_worker():
|
996 |
+
"""Thread function that processes dialogues and sends batches to train or val."""
|
997 |
+
try:
|
998 |
+
train_batches_needed = steps_per_epoch # 9 in your logs
|
999 |
+
val_batches_needed = val_steps # 3 in your logs
|
1000 |
+
train_batches_sent = 0
|
1001 |
+
val_batches_sent = 0
|
1002 |
+
|
1003 |
+
logger.info(f"Pipeline starting: need {train_batches_needed} train batches, {val_batches_needed} val batches")
|
1004 |
+
|
1005 |
+
# Possibly shuffle your processed pairs to avoid repeating them in the same order
|
1006 |
+
# (If you haven't already done so in the pipeline)
|
1007 |
+
random.shuffle(dataset_preparer.processed_pairs)
|
1008 |
+
|
1009 |
+
while (train_batches_sent < train_batches_needed or
|
1010 |
+
val_batches_sent < val_batches_needed):
|
1011 |
+
|
1012 |
+
# We loop over the generator
|
1013 |
+
for batch in dataset_preparer.process_dialogues(dialogues):
|
1014 |
+
if stop_flag.is_set():
|
1015 |
+
logger.warning("Pipeline stopped early")
|
1016 |
+
break
|
1017 |
+
|
1018 |
+
if train_batches_sent < train_batches_needed:
|
1019 |
+
train_queue.put(batch)
|
1020 |
+
train_batches_sent += 1
|
1021 |
+
elif val_batches_sent < val_batches_needed:
|
1022 |
+
val_queue.put(batch)
|
1023 |
+
val_batches_sent += 1
|
1024 |
+
else:
|
1025 |
+
# We have enough batches for both train & val
|
1026 |
+
break
|
1027 |
+
|
1028 |
+
# If we still haven't met our target steps, REPEAT the data
|
1029 |
+
if train_batches_sent < train_batches_needed or val_batches_sent < val_batches_needed:
|
1030 |
+
logger.info("Data exhausted, repeating since we still need more batches...")
|
1031 |
+
# Optionally shuffle again
|
1032 |
+
random.shuffle(dataset_preparer.processed_pairs)
|
1033 |
+
else:
|
1034 |
+
# We have enough
|
1035 |
+
break
|
1036 |
|
1037 |
+
logger.info(
|
1038 |
+
f"Pipeline complete: sent {train_batches_sent}/{train_batches_needed} train batches, "
|
1039 |
+
f"{val_batches_sent}/{val_batches_needed} val batches"
|
1040 |
+
)
|
1041 |
|
1042 |
+
except Exception as e:
|
1043 |
+
logger.error(f"Error in pipeline worker: {str(e)}")
|
1044 |
+
raise e
|
1045 |
+
finally:
|
1046 |
+
train_queue.put(None)
|
1047 |
+
val_queue.put(None)
|
1048 |
|
1049 |
+
# Start data preparation pipeline in background thread
|
1050 |
+
pipeline_thread = threading.Thread(target=data_pipeline_worker)
|
1051 |
+
pipeline_thread.start()
|
1052 |
|
1053 |
+
try:
|
1054 |
+
# --- Training Phase ---
|
1055 |
+
epoch_loss_avg = tf.keras.metrics.Mean()
|
1056 |
+
batches_processed = 0
|
|
|
|
|
1057 |
|
1058 |
+
try:
|
1059 |
+
train_pbar = tqdm(total=steps_per_epoch, desc=f"Training Epoch {epoch}")
|
1060 |
+
is_tqdm_train = True
|
1061 |
+
except ImportError:
|
1062 |
+
train_pbar = None
|
1063 |
+
is_tqdm_train = False
|
1064 |
+
logger.info("Training progress bar disabled")
|
1065 |
+
|
1066 |
+
while batches_processed < steps_per_epoch:
|
1067 |
+
try:
|
1068 |
+
batch = train_queue.get(timeout=1200) # 20 minutes timeout
|
1069 |
+
if batch is None:
|
1070 |
+
logger.warning(f"Received end signal after only {batches_processed}/{steps_per_epoch} batches")
|
1071 |
+
break
|
1072 |
+
|
1073 |
+
q_batch, p_batch = batch[0], batch[1]
|
1074 |
+
attention_mask = batch[2] if len(batch) > 2 else None
|
1075 |
+
|
1076 |
+
loss = self.train_step(q_batch, p_batch, attention_mask)
|
1077 |
+
epoch_loss_avg(loss)
|
1078 |
+
batches_processed += 1
|
1079 |
+
|
1080 |
+
# Log to TensorBoard
|
1081 |
+
with train_summary_writer.as_default():
|
1082 |
+
tf.summary.scalar("loss", loss, step=epoch)
|
1083 |
+
|
1084 |
+
# Update progress bar
|
1085 |
+
if use_lr_schedule:
|
1086 |
+
current_lr = float(lr_schedule(self.optimizer.iterations))
|
1087 |
else:
|
1088 |
+
current_lr = float(self.optimizer.learning_rate.numpy())
|
1089 |
+
|
1090 |
+
if is_tqdm_train:
|
1091 |
+
train_pbar.update(1)
|
1092 |
+
train_pbar.set_postfix({
|
1093 |
+
"loss": f"{loss.numpy():.4f}",
|
1094 |
+
"lr": f"{current_lr:.2e}",
|
1095 |
+
"batches": f"{batches_processed}/{steps_per_epoch}"
|
1096 |
+
})
|
1097 |
+
|
1098 |
+
except Empty:
|
1099 |
+
logger.warning(f"Queue timeout after {batches_processed}/{steps_per_epoch} batches")
|
1100 |
+
break
|
1101 |
+
|
1102 |
+
if is_tqdm_train and train_pbar:
|
1103 |
+
train_pbar.close()
|
1104 |
+
|
1105 |
+
# --- Validation Phase ---
|
1106 |
+
val_loss_avg = tf.keras.metrics.Mean()
|
1107 |
+
val_batches_processed = 0
|
1108 |
+
|
1109 |
+
try:
|
1110 |
+
val_pbar = tqdm(total=val_steps, desc="Validation")
|
1111 |
+
is_tqdm_val = True
|
1112 |
+
except ImportError:
|
1113 |
+
val_pbar = None
|
1114 |
+
is_tqdm_val = False
|
1115 |
+
logger.info("Validation progress bar disabled")
|
1116 |
+
|
1117 |
+
while val_batches_processed < val_steps:
|
1118 |
+
try:
|
1119 |
+
batch = val_queue.get(timeout=30)
|
1120 |
+
if batch is None:
|
1121 |
+
logger.warning(
|
1122 |
+
f"Received end signal after {val_batches_processed}/{val_steps} validation batches"
|
1123 |
+
)
|
1124 |
+
break
|
1125 |
+
|
1126 |
+
q_batch, p_batch = batch[0], batch[1]
|
1127 |
+
attention_mask = batch[2] if len(batch) > 2 else None
|
1128 |
+
|
1129 |
+
val_loss = self.validation_step(q_batch, p_batch, attention_mask)
|
1130 |
+
val_loss_avg(val_loss)
|
1131 |
+
val_batches_processed += 1
|
1132 |
+
|
1133 |
+
if is_tqdm_val:
|
1134 |
+
val_pbar.update(1)
|
1135 |
+
val_pbar.set_postfix({
|
1136 |
+
"val_loss": f"{val_loss.numpy():.4f}",
|
1137 |
+
"batches": f"{val_batches_processed}/{val_steps}"
|
1138 |
+
})
|
1139 |
+
|
1140 |
+
except Empty:
|
1141 |
+
logger.warning(
|
1142 |
+
f"Validation queue timeout after {val_batches_processed}/{val_steps} batches"
|
1143 |
+
)
|
1144 |
+
break
|
1145 |
+
|
1146 |
+
if is_tqdm_val and val_pbar:
|
1147 |
+
val_pbar.close()
|
1148 |
+
|
1149 |
+
# End of epoch: compute final epoch stats
|
1150 |
+
train_loss = epoch_loss_avg.result().numpy()
|
1151 |
+
val_loss = val_loss_avg.result().numpy()
|
1152 |
+
logger.info(f"Epoch {epoch} Complete: Train Loss={train_loss:.4f}, Val Loss={val_loss:.4f}")
|
1153 |
+
|
1154 |
+
# Log epoch metrics
|
1155 |
+
with val_summary_writer.as_default():
|
1156 |
+
tf.summary.scalar("val_loss", val_loss, step=epoch)
|
1157 |
+
|
1158 |
+
# Save checkpoint
|
1159 |
+
manager.save()
|
1160 |
+
|
1161 |
+
# Store metrics in history
|
1162 |
+
self.history['train_loss'].append(train_loss)
|
1163 |
+
self.history['val_loss'].append(val_loss)
|
1164 |
+
|
1165 |
+
if use_lr_schedule:
|
1166 |
+
current_lr = float(lr_schedule(self.optimizer.iterations))
|
1167 |
+
else:
|
1168 |
+
current_lr = float(self.optimizer.learning_rate.numpy())
|
1169 |
+
|
1170 |
+
self.history.setdefault('learning_rate', []).append(current_lr)
|
1171 |
+
|
1172 |
+
# Early stopping logic
|
1173 |
+
if val_loss < best_val_loss - min_delta:
|
1174 |
+
best_val_loss = val_loss
|
1175 |
+
epochs_no_improve = 0
|
1176 |
+
logger.info(f"Validation loss improved to {val_loss:.4f}. Reset patience.")
|
1177 |
+
else:
|
1178 |
+
epochs_no_improve += 1
|
1179 |
+
logger.info(f"No improvement this epoch. Patience: {epochs_no_improve}/{early_stopping_patience}")
|
1180 |
+
if epochs_no_improve >= early_stopping_patience:
|
1181 |
+
logger.info("Early stopping triggered.")
|
1182 |
+
break
|
1183 |
|
1184 |
+
except Exception as e:
|
1185 |
+
logger.error(f"Error during training: {str(e)}")
|
1186 |
+
stop_flag.set()
|
1187 |
+
raise e
|
1188 |
+
finally:
|
1189 |
+
# Clean up epoch resources
|
1190 |
+
stop_flag.set()
|
1191 |
+
pipeline_thread.join()
|
1192 |
|
1193 |
+
logger.info("Streaming training completed!")
|
1194 |
|
|
|
|
|
|
|
1195 |
|
1196 |
+
@tf.function
|
1197 |
+
def train_step(self, q_batch: tf.Tensor, p_batch: tf.Tensor, attention_mask: Optional[tf.Tensor] = None) -> tf.Tensor:
|
1198 |
+
"""Single training step with tf.function optimization and partial batch handling."""
|
1199 |
+
with tf.GradientTape() as tape:
|
1200 |
+
q_enc = self.encoder(q_batch, training=True)
|
1201 |
+
p_enc = self.encoder(p_batch, training=True)
|
1202 |
|
1203 |
+
sim_matrix = tf.matmul(q_enc, p_enc, transpose_b=True)
|
|
|
|
|
|
|
1204 |
|
1205 |
+
# Handle partial batches
|
1206 |
+
batch_size = tf.shape(q_enc)[0]
|
1207 |
+
labels = tf.range(batch_size, dtype=tf.int32)
|
1208 |
+
|
1209 |
+
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
|
1210 |
+
labels=labels, logits=sim_matrix
|
1211 |
+
)
|
1212 |
+
|
1213 |
+
# If there's an attention mask, apply it
|
1214 |
+
if attention_mask is not None:
|
1215 |
+
loss = loss * attention_mask
|
1216 |
+
# normalize by the sum of attention_mask
|
1217 |
+
loss = tf.reduce_sum(loss) / tf.reduce_sum(attention_mask)
|
1218 |
else:
|
1219 |
+
loss = tf.reduce_mean(loss)
|
1220 |
+
|
1221 |
+
gradients = tape.gradient(loss, self.encoder.trainable_variables)
|
1222 |
+
self.optimizer.apply_gradients(zip(gradients, self.encoder.trainable_variables))
|
1223 |
+
return loss
|
1224 |
+
|
1225 |
+
@tf.function
|
1226 |
+
def validation_step(self, q_batch: tf.Tensor, p_batch: tf.Tensor, attention_mask: Optional[tf.Tensor] = None) -> tf.Tensor:
|
1227 |
+
"""Single validation step with partial batch handling."""
|
1228 |
+
q_enc = self.encoder(q_batch, training=False)
|
1229 |
+
p_enc = self.encoder(p_batch, training=False)
|
1230 |
+
|
1231 |
+
sim_matrix = tf.matmul(q_enc, p_enc, transpose_b=True)
|
1232 |
+
batch_size = tf.shape(q_enc)[0]
|
1233 |
+
labels = tf.range(batch_size, dtype=tf.int32)
|
1234 |
|
1235 |
+
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
|
1236 |
+
labels=labels, logits=sim_matrix
|
1237 |
+
)
|
1238 |
+
|
1239 |
+
if attention_mask is not None:
|
1240 |
+
loss = loss * attention_mask
|
1241 |
+
loss = tf.reduce_sum(loss) / tf.reduce_sum(attention_mask)
|
1242 |
+
else:
|
1243 |
+
loss = tf.reduce_mean(loss)
|
1244 |
+
|
1245 |
+
return loss
|
1246 |
|
1247 |
def _get_lr_schedule(
|
1248 |
self,
|
|
|
1382 |
conversation_parts.append(f"{self.special_tokens['user']} {query}")
|
1383 |
return "\n".join(conversation_parts)
|
1384 |
|
1385 |
+
class StreamingDataPipeline:
|
1386 |
+
"""Helper class to manage the streaming data preparation pipeline with optimized caching and GPU usage."""
|
1387 |
+
def __init__(
|
1388 |
+
self,
|
1389 |
+
tokenizer,
|
1390 |
+
encoder,
|
1391 |
+
index,
|
1392 |
+
response_pool,
|
1393 |
+
max_length: int,
|
1394 |
+
batch_size: int,
|
1395 |
+
neg_samples: int
|
1396 |
+
):
|
1397 |
+
self.tokenizer = tokenizer
|
1398 |
+
self.encoder = encoder
|
1399 |
+
self.index = index
|
1400 |
+
self.response_pool = response_pool
|
1401 |
+
self.max_length = max_length
|
1402 |
+
self.base_batch_size = batch_size
|
1403 |
+
self.neg_samples = neg_samples
|
1404 |
+
self.memory_monitor = GPUMemoryMonitor()
|
1405 |
+
|
1406 |
+
# Caching structures
|
1407 |
+
self.hard_negatives_cache = {}
|
1408 |
+
self.processed_pairs = []
|
1409 |
+
self.query_embeddings_cache = {}
|
1410 |
+
|
1411 |
+
# Error tracking
|
1412 |
+
self.error_count = 0
|
1413 |
+
self.max_retries = 3
|
1414 |
+
|
1415 |
+
# Batch processing settings
|
1416 |
+
self.current_batch_size = batch_size
|
1417 |
+
self.batch_increase_factor = 1.25
|
1418 |
+
|
1419 |
+
# TODO: use GPU/strategy
|
1420 |
+
if len(response_pool) < 100:
|
1421 |
+
self.embedding_batch_size = 16
|
1422 |
+
self.search_batch_size = 8
|
1423 |
+
self.max_batch_size = 32
|
1424 |
+
self.min_batch_size = 4
|
1425 |
+
else:
|
1426 |
+
self.embedding_batch_size = 64
|
1427 |
+
self.search_batch_size = 32
|
1428 |
+
self.min_batch_size = max(8, batch_size // 4)
|
1429 |
+
self.max_batch_size = 64
|
1430 |
+
|
1431 |
+
def save_cache(self, cache_dir: Path) -> None:
|
1432 |
+
"""Save all cached data for future runs."""
|
1433 |
+
cache_dir = Path(cache_dir)
|
1434 |
+
cache_dir.mkdir(parents=True, exist_ok=True)
|
1435 |
+
|
1436 |
+
logger.info(f"Saving cache to {cache_dir}")
|
1437 |
+
|
1438 |
+
# Save embeddings cache
|
1439 |
+
embeddings_path = cache_dir / "query_embeddings.npy"
|
1440 |
+
np.save(
|
1441 |
+
embeddings_path,
|
1442 |
+
{k: v.numpy() if hasattr(v, 'numpy') else v
|
1443 |
+
for k, v in self.query_embeddings_cache.items()}
|
1444 |
+
)
|
1445 |
+
|
1446 |
+
# Save hard negatives and processed pairs
|
1447 |
+
with open(cache_dir / "hard_negatives.json", 'w') as f:
|
1448 |
+
json.dump(self.hard_negatives_cache, f)
|
1449 |
+
|
1450 |
+
with open(cache_dir / "processed_pairs.json", 'w') as f:
|
1451 |
+
json.dump(self.processed_pairs, f)
|
1452 |
+
|
1453 |
+
logger.info("Cache saved successfully")
|
1454 |
+
|
1455 |
+
def load_cache(self, cache_dir: Path) -> bool:
|
1456 |
+
"""Load cached data if available."""
|
1457 |
+
cache_dir = Path(cache_dir)
|
1458 |
+
required_files = [
|
1459 |
+
"query_embeddings.npy",
|
1460 |
+
"hard_negatives.json",
|
1461 |
+
"processed_pairs.json"
|
1462 |
+
]
|
1463 |
+
|
1464 |
+
if not all((cache_dir / f).exists() for f in required_files):
|
1465 |
+
logger.info("Cache files not found")
|
1466 |
+
return False
|
1467 |
+
|
1468 |
+
try:
|
1469 |
+
logger.info("Loading cache...")
|
1470 |
+
|
1471 |
+
# Load embeddings
|
1472 |
+
self.query_embeddings_cache = np.load(
|
1473 |
+
cache_dir / "query_embeddings.npy",
|
1474 |
+
allow_pickle=True
|
1475 |
+
).item()
|
1476 |
+
|
1477 |
+
# Load other caches
|
1478 |
+
with open(cache_dir / "hard_negatives.json", 'r') as f:
|
1479 |
+
self.hard_negatives_cache = json.load(f)
|
1480 |
+
|
1481 |
+
with open(cache_dir / "processed_pairs.json", 'r') as f:
|
1482 |
+
self.processed_pairs = json.load(f)
|
1483 |
+
|
1484 |
+
logger.info(f"Cache loaded successfully: {len(self.processed_pairs)} pairs")
|
1485 |
+
return True
|
1486 |
+
|
1487 |
+
except Exception as e:
|
1488 |
+
logger.error(f"Error loading cache: {e}")
|
1489 |
+
return False
|
1490 |
+
|
1491 |
+
def _adjust_batch_size(self) -> None:
|
1492 |
+
"""Dynamically adjust batch size based on GPU memory usage."""
|
1493 |
+
if self.memory_monitor:
|
1494 |
+
if self.memory_monitor.should_reduce_batch_size():
|
1495 |
+
new_size = max(self.min_batch_size, self.current_batch_size // 2)
|
1496 |
+
if new_size != self.current_batch_size:
|
1497 |
+
if new_size < self.min_batch_size:
|
1498 |
+
logger.info(f"Reducing batch size to {new_size} due to high memory usage")
|
1499 |
+
self.current_batch_size = new_size
|
1500 |
+
gc.collect()
|
1501 |
+
if tf.config.list_physical_devices('GPU'):
|
1502 |
+
tf.keras.backend.clear_session()
|
1503 |
+
|
1504 |
+
elif self.memory_monitor.can_increase_batch_size():
|
1505 |
+
new_size = min(self.max_batch_size, int(self.current_batch_size * self.batch_increase_factor)) # More gradual increase
|
1506 |
+
if new_size != self.current_batch_size:
|
1507 |
+
if new_size > self.max_batch_size:
|
1508 |
+
logger.info(f"Increasing batch size to {new_size}")
|
1509 |
+
self.current_batch_size = new_size
|
1510 |
+
|
1511 |
+
def _add_progress_metrics(self, pbar, **metrics) -> None:
|
1512 |
+
"""Add memory and batch size metrics to progress bars."""
|
1513 |
+
if self.memory_monitor:
|
1514 |
+
gpu_usage = self.memory_monitor.get_memory_usage()
|
1515 |
+
metrics['gpu_mem'] = f"{gpu_usage:.1%}"
|
1516 |
+
metrics['batch_size'] = self.current_batch_size
|
1517 |
+
pbar.set_postfix(**metrics)
|
1518 |
+
|
1519 |
+
def preprocess_dialogues(self, dialogues: List[dict]) -> None:
|
1520 |
+
"""Preprocess all dialogues with error recovery and caching."""
|
1521 |
+
retry_count = 0
|
1522 |
+
|
1523 |
+
while retry_count < self.max_retries:
|
1524 |
+
try:
|
1525 |
+
self._preprocess_dialogues_internal(dialogues)
|
1526 |
+
break
|
1527 |
+
except Exception as e:
|
1528 |
+
retry_count += 1
|
1529 |
+
logger.warning(f"Preprocessing attempt {retry_count} failed: {e}")
|
1530 |
+
if retry_count == self.max_retries:
|
1531 |
+
logger.error("Max retries reached. Falling back to CPU processing")
|
1532 |
+
self._fallback_to_cpu_processing(dialogues)
|
1533 |
+
|
1534 |
+
def _preprocess_dialogues_internal(self, dialogues: List[dict]) -> None:
|
1535 |
+
"""Internal preprocessing implementation with progress tracking."""
|
1536 |
+
logger.info("Starting dialogue preprocessing...")
|
1537 |
+
|
1538 |
+
# Collect unique queries and pairs
|
1539 |
+
unique_queries = set()
|
1540 |
+
query_positive_pairs = []
|
1541 |
+
|
1542 |
+
with tqdm(total=len(dialogues), desc="Collecting dialogue pairs") as pbar:
|
1543 |
+
for dialogue in dialogues:
|
1544 |
+
pairs = self._extract_pairs_from_dialogue(dialogue)
|
1545 |
+
for query, positive in pairs:
|
1546 |
+
unique_queries.add(query)
|
1547 |
+
query_positive_pairs.append((query, positive))
|
1548 |
+
pbar.update(1)
|
1549 |
+
self._add_progress_metrics(pbar, pairs=len(query_positive_pairs))
|
1550 |
+
|
1551 |
+
# Precompute embeddings
|
1552 |
+
logger.info("Precomputing query embeddings...")
|
1553 |
+
self.precompute_query_embeddings(list(unique_queries))
|
1554 |
+
|
1555 |
+
# Find hard negatives
|
1556 |
+
logger.info("Finding hard negatives for all pairs...")
|
1557 |
+
self._find_hard_negatives_for_pairs(query_positive_pairs)
|
1558 |
|
1559 |
+
def precompute_query_embeddings(self, queries: List[str]) -> None:
|
1560 |
+
"""Precompute embeddings for all unique queries in batches."""
|
1561 |
+
unique_queries = list(set(queries))
|
1562 |
+
|
1563 |
+
with tqdm(total=len(unique_queries), desc="Precomputing query embeddings") as pbar:
|
1564 |
+
for i in range(0, len(unique_queries), self.embedding_batch_size):
|
1565 |
+
# Adjust batch size based on memory
|
1566 |
+
self._adjust_batch_size()
|
1567 |
+
batch_size = min(self.embedding_batch_size, len(unique_queries) - i)
|
1568 |
+
|
1569 |
+
# Get batch of queries
|
1570 |
+
batch_queries = unique_queries[i:i + batch_size]
|
1571 |
+
|
1572 |
+
try:
|
1573 |
+
# Tokenize batch
|
1574 |
+
encoded = self.tokenizer(
|
1575 |
+
batch_queries,
|
1576 |
+
padding=True,
|
1577 |
+
truncation=True,
|
1578 |
+
max_length=self.max_length,
|
1579 |
+
return_tensors='tf'
|
1580 |
+
)
|
1581 |
+
|
1582 |
+
# Get embeddings
|
1583 |
+
embeddings = self.encoder(encoded['input_ids'], training=False)
|
1584 |
+
embeddings_np = embeddings.numpy().astype('float32')
|
1585 |
+
|
1586 |
+
# Normalize for similarity search
|
1587 |
+
faiss.normalize_L2(embeddings_np)
|
1588 |
+
|
1589 |
+
# Cache embeddings
|
1590 |
+
for query, emb in zip(batch_queries, embeddings_np):
|
1591 |
+
self.query_embeddings_cache[query] = emb
|
1592 |
+
|
1593 |
+
pbar.update(len(batch_queries))
|
1594 |
+
self._add_progress_metrics(
|
1595 |
+
pbar,
|
1596 |
+
cached=len(self.query_embeddings_cache),
|
1597 |
+
batch_size=batch_size
|
1598 |
+
)
|
1599 |
+
|
1600 |
+
except Exception as e:
|
1601 |
+
logger.warning(f"Error processing batch: {e}")
|
1602 |
+
# Reduce batch size and retry
|
1603 |
+
self.embedding_batch_size = max(self.min_batch_size, self.embedding_batch_size // 2)
|
1604 |
+
continue
|
1605 |
+
|
1606 |
+
# Memory cleanup after successful batch
|
1607 |
+
if i % (self.embedding_batch_size * 10) == 0:
|
1608 |
+
gc.collect()
|
1609 |
+
if tf.config.list_physical_devices('GPU'):
|
1610 |
+
tf.keras.backend.clear_session()
|
1611 |
+
|
1612 |
+
logger.info(f"Cached embeddings for {len(self.query_embeddings_cache)} unique queries")
|
1613 |
+
|
1614 |
+
def _extract_pairs_from_dialogue(self, dialogue: dict) -> List[Tuple[str, str]]:
|
1615 |
+
"""Extract query-response pairs from a dialogue."""
|
1616 |
+
pairs = []
|
1617 |
+
turns = dialogue.get('turns', [])
|
1618 |
+
|
1619 |
+
for i in range(len(turns) - 1):
|
1620 |
+
current_turn = turns[i]
|
1621 |
+
next_turn = turns[i+1]
|
1622 |
+
|
1623 |
+
if (current_turn.get('speaker') == 'user' and
|
1624 |
+
next_turn.get('speaker') == 'assistant' and
|
1625 |
+
'text' in current_turn and
|
1626 |
+
'text' in next_turn):
|
1627 |
+
|
1628 |
+
query = current_turn['text'].strip()
|
1629 |
+
positive = next_turn['text'].strip()
|
1630 |
+
pairs.append((query, positive))
|
1631 |
+
|
1632 |
+
return pairs
|
1633 |
+
|
1634 |
+
def _fallback_to_cpu_processing(self, dialogues: List[dict]) -> None:
|
1635 |
+
"""Fallback processing method using CPU only."""
|
1636 |
+
logger.info("Falling back to CPU-only processing")
|
1637 |
+
# Reset GPU-specific settings
|
1638 |
+
self.current_batch_size = self.min_batch_size
|
1639 |
+
self.embedding_batch_size = 32
|
1640 |
+
self.search_batch_size = 16
|
1641 |
+
|
1642 |
+
# Attempt preprocessing with reduced batches
|
1643 |
+
self._preprocess_dialogues_internal(dialogues)
|
1644 |
+
|
1645 |
+
def process_dialogues(self, dialogues: List[dict]) -> Generator[Tuple[tf.Tensor, tf.Tensor, Optional[tf.Tensor]], None, None]:
|
1646 |
+
"""
|
1647 |
+
Process dialogues using cached data with dynamic batch sizing.
|
1648 |
+
Yields (q_tokens['input_ids'], p_tokens['input_ids'], attention_mask) tuples.
|
1649 |
+
"""
|
1650 |
+
# Preprocess if not already done
|
1651 |
+
if not self.processed_pairs:
|
1652 |
+
self.preprocess_dialogues(dialogues)
|
1653 |
+
|
1654 |
+
# Generate batches from cached data
|
1655 |
+
current_queries = []
|
1656 |
+
current_positives = []
|
1657 |
+
|
1658 |
+
# Counters for logging
|
1659 |
+
total_examples_yielded = 0
|
1660 |
+
total_batches_yielded = 0
|
1661 |
+
|
1662 |
+
with tqdm(total=len(self.processed_pairs), desc="Generating training batches", leave=False) as pbar:
|
1663 |
+
for i, (query, positive) in enumerate(self.processed_pairs):
|
1664 |
+
# Periodically adjust batch size
|
1665 |
+
if i % 10 == 0: # Check more frequently (e.g., every 10 pairs)
|
1666 |
+
self._adjust_batch_size()
|
1667 |
+
|
1668 |
+
# Add original pair
|
1669 |
+
current_queries.append(query)
|
1670 |
+
current_positives.append(positive)
|
1671 |
+
|
1672 |
+
# Add cached hard negatives for each query
|
1673 |
+
hard_negatives = self.hard_negatives_cache.get((query, positive), [])
|
1674 |
+
for neg_text in hard_negatives:
|
1675 |
+
current_queries.append(query)
|
1676 |
+
current_positives.append(neg_text)
|
1677 |
+
|
1678 |
+
# If we have enough examples to form a full batch, yield it
|
1679 |
+
while len(current_queries) >= self.current_batch_size:
|
1680 |
+
batch_queries = current_queries[:self.current_batch_size]
|
1681 |
+
batch_positives = current_positives[:self.current_batch_size]
|
1682 |
+
|
1683 |
+
# Update counters and logs
|
1684 |
+
batch_size_to_yield = len(batch_queries)
|
1685 |
+
total_examples_yielded += batch_size_to_yield
|
1686 |
+
total_batches_yielded += 1
|
1687 |
+
|
1688 |
+
yield self._prepare_batch(batch_queries, batch_positives, pad_to_batch_size=False)
|
1689 |
+
|
1690 |
+
# Remove used entries
|
1691 |
+
current_queries = current_queries[self.current_batch_size:]
|
1692 |
+
current_positives = current_positives[self.current_batch_size:]
|
1693 |
+
|
1694 |
+
# Update progress bar
|
1695 |
+
pbar.update(1)
|
1696 |
+
self._add_progress_metrics(
|
1697 |
+
pbar,
|
1698 |
+
pairs_processed=pbar.n,
|
1699 |
+
pending_pairs=len(current_queries)
|
1700 |
+
)
|
1701 |
|
1702 |
+
# After the loop, if anything is left, yield a final partial batch
|
1703 |
+
if current_queries:
|
1704 |
+
leftover_size = len(current_queries)
|
1705 |
+
total_examples_yielded += leftover_size
|
1706 |
+
total_batches_yielded += 1
|
1707 |
|
1708 |
+
yield self._prepare_batch(
|
1709 |
+
current_queries,
|
1710 |
+
current_positives,
|
1711 |
+
pad_to_batch_size=True
|
1712 |
+
)
|
1713 |
+
|
1714 |
+
def _find_hard_negatives_for_pairs(self, query_positive_pairs: List[Tuple[str, str]]) -> None:
|
1715 |
+
"""Process pairs in batches to find hard negatives with GPU acceleration."""
|
1716 |
+
total_pairs = len(query_positive_pairs)
|
1717 |
+
|
1718 |
+
# Use smaller batch size for small datasets
|
1719 |
+
if len(self.response_pool) < 1000:
|
1720 |
+
batch_size = min(8, self.search_batch_size)
|
1721 |
+
else:
|
1722 |
+
batch_size = self.search_batch_size
|
1723 |
+
|
1724 |
+
try:
|
1725 |
+
pbar = tqdm(total=total_pairs, desc="Finding hard negatives")
|
1726 |
+
is_tqdm = True
|
1727 |
+
except ImportError:
|
1728 |
+
pbar = None
|
1729 |
+
is_tqdm = False
|
1730 |
+
logger.info("Progress bar disabled - continuing without visual progress")
|
1731 |
+
|
1732 |
+
for i in range(0, total_pairs, batch_size):
|
1733 |
+
self._adjust_batch_size()
|
1734 |
+
|
1735 |
+
batch_pairs = query_positive_pairs[i:i + batch_size]
|
1736 |
+
batch_queries, batch_positives = zip(*batch_pairs)
|
1737 |
+
|
1738 |
+
batch_negatives = self._find_hard_negatives_batch(
|
1739 |
+
list(batch_queries),
|
1740 |
+
list(batch_positives)
|
1741 |
+
)
|
1742 |
+
|
1743 |
+
for query, positive, negatives in zip(batch_queries, batch_positives, batch_negatives):
|
1744 |
+
self.hard_negatives_cache[(query, positive)] = negatives
|
1745 |
+
self.processed_pairs.append((query, positive))
|
1746 |
+
|
1747 |
+
if is_tqdm:
|
1748 |
+
pbar.update(len(batch_pairs))
|
1749 |
+
self._add_progress_metrics(
|
1750 |
+
pbar,
|
1751 |
+
cached=len(self.processed_pairs),
|
1752 |
+
progress=f"{i+len(batch_pairs)}/{total_pairs}"
|
1753 |
+
)
|
1754 |
+
|
1755 |
+
if is_tqdm:
|
1756 |
+
pbar.close()
|
1757 |
+
|
1758 |
+
def _find_hard_negatives_batch(self, queries: List[str], positives: List[str]) -> List[List[str]]:
|
1759 |
+
"""Find hard negatives for a batch of queries with error handling and retries."""
|
1760 |
+
retry_count = 0
|
1761 |
+
total_responses = len(self.response_pool)
|
1762 |
+
|
1763 |
+
# For very small datasets (testing), just use random sampling
|
1764 |
+
if total_responses < 100:
|
1765 |
+
all_negatives = []
|
1766 |
+
for positive in positives:
|
1767 |
+
available = [r for r in self.response_pool if r.strip() != positive.strip()]
|
1768 |
+
if available:
|
1769 |
+
negatives = list(np.random.choice(
|
1770 |
+
available,
|
1771 |
+
size=min(self.neg_samples, len(available)),
|
1772 |
+
replace=False
|
1773 |
+
))
|
1774 |
+
else:
|
1775 |
+
negatives = []
|
1776 |
+
# Pad with empty strings if needed
|
1777 |
+
while len(negatives) < self.neg_samples:
|
1778 |
+
negatives.append("")
|
1779 |
+
all_negatives.append(negatives)
|
1780 |
+
return all_negatives
|
1781 |
+
|
1782 |
+
while retry_count < self.max_retries:
|
1783 |
+
try:
|
1784 |
+
# Get cached embeddings and ensure they're the right type
|
1785 |
+
query_embeddings = np.vstack([
|
1786 |
+
self.query_embeddings_cache[q] for q in queries
|
1787 |
+
]).astype(np.float32)
|
1788 |
|
1789 |
+
if not query_embeddings.flags['C_CONTIGUOUS']:
|
1790 |
+
query_embeddings = np.ascontiguousarray(query_embeddings)
|
1791 |
+
|
1792 |
+
# Normalize embeddings
|
1793 |
+
faiss.normalize_L2(query_embeddings)
|
1794 |
+
|
1795 |
+
k = 1 #min(total_responses - 1, max(3, self.neg_samples + 2))
|
1796 |
+
#logger.debug(f"Searching with k={k} among {total_responses} responses")
|
1797 |
+
|
1798 |
+
assert query_embeddings.dtype == np.float32, f"Embeddings are not float32: {query_embeddings.dtype}" # Assertion here
|
1799 |
|
1800 |
+
try:
|
1801 |
+
distances, indices = self.index.search(query_embeddings, k)
|
1802 |
+
except RuntimeError as e:
|
1803 |
+
logger.error(f"FAISS search failed: {e}")
|
1804 |
+
return self._fallback_random_negatives(queries, positives)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1805 |
|
1806 |
+
# Process results
|
1807 |
+
all_negatives = []
|
1808 |
+
for i, (query_indices, query, positive) in enumerate(zip(indices, queries, positives)):
|
1809 |
+
negatives = []
|
1810 |
+
positive_strip = positive.strip()
|
1811 |
+
|
1812 |
+
# Filter valid indices and deduplicate
|
1813 |
+
seen = {positive_strip}
|
1814 |
+
for idx in query_indices:
|
1815 |
+
if idx >= 0 and idx < total_responses:
|
1816 |
+
candidate = self.response_pool[idx].strip()
|
1817 |
+
if candidate and candidate not in seen: # Check for non-empty strings
|
1818 |
+
seen.add(candidate)
|
1819 |
+
negatives.append(candidate)
|
1820 |
+
if len(negatives) >= self.neg_samples:
|
1821 |
+
break
|
1822 |
+
|
1823 |
+
# If we don't have enough negatives, use random sampling from remaining pool
|
1824 |
+
if len(negatives) < self.neg_samples:
|
1825 |
+
available = [r for r in self.response_pool if r.strip() not in seen and r.strip()]
|
1826 |
+
if available:
|
1827 |
+
additional = np.random.choice(
|
1828 |
+
available,
|
1829 |
+
size=min(self.neg_samples - len(negatives), len(available)),
|
1830 |
+
replace=False
|
1831 |
+
)
|
1832 |
+
negatives.extend(additional)
|
1833 |
+
|
1834 |
+
# Still pad with empty strings if needed
|
1835 |
+
while len(negatives) < self.neg_samples:
|
1836 |
+
negatives.append("")
|
1837 |
+
|
1838 |
+
all_negatives.append(negatives)
|
1839 |
|
1840 |
+
return all_negatives
|
1841 |
+
|
1842 |
+
except Exception as e:
|
1843 |
+
retry_count += 1
|
1844 |
+
logger.warning(f"Hard negative search attempt {retry_count} failed: {e}")
|
1845 |
+
if retry_count == self.max_retries:
|
1846 |
+
logger.error("Max retries reached for hard negative search")
|
1847 |
+
return [[] for _ in queries] # Return empty lists on complete failure
|
1848 |
+
gc.collect()
|
1849 |
+
if tf.config.list_physical_devices('GPU'):
|
1850 |
+
tf.keras.backend.clear_session()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1851 |
|
1852 |
+
def _fallback_random_negatives(self, queries: List[str], positives: List[str]) -> List[List[str]]:
|
1853 |
+
"""Fallback to random sampling when similarity search fails."""
|
1854 |
+
logger.warning("Falling back to random negative sampling")
|
1855 |
+
all_negatives = []
|
1856 |
+
for positive in positives:
|
1857 |
+
available = [r for r in self.response_pool if r.strip() != positive.strip()]
|
1858 |
+
negatives = list(np.random.choice(
|
1859 |
+
available,
|
1860 |
+
size=min(self.neg_samples, len(available)),
|
1861 |
+
replace=False
|
1862 |
+
)) if available else []
|
1863 |
+
while len(negatives) < self.neg_samples:
|
1864 |
+
negatives.append("")
|
1865 |
+
all_negatives.append(negatives)
|
1866 |
+
return all_negatives
|
1867 |
|
1868 |
+
def _prepare_batch(
|
1869 |
+
self,
|
1870 |
+
queries: List[str],
|
1871 |
+
positives: List[str],
|
1872 |
+
pad_to_batch_size: bool = False
|
1873 |
+
) -> Tuple[tf.Tensor, tf.Tensor, Optional[tf.Tensor]]:
|
1874 |
+
"""Prepare a batch with dynamic padding and memory optimization."""
|
1875 |
+
actual_size = len(queries)
|
1876 |
+
|
1877 |
+
# Handle padding if requested and needed
|
1878 |
+
if pad_to_batch_size and actual_size < self.current_batch_size:
|
1879 |
+
padding_needed = self.current_batch_size - actual_size
|
1880 |
+
queries.extend([queries[0]] * padding_needed)
|
1881 |
+
positives.extend([positives[0]] * padding_needed)
|
1882 |
+
# Create attention mask for padded examples
|
1883 |
+
attention_mask = tf.concat([
|
1884 |
+
tf.ones((actual_size,), dtype=tf.float32),
|
1885 |
+
tf.zeros((padding_needed,), dtype=tf.float32)
|
1886 |
+
], axis=0)
|
1887 |
+
else:
|
1888 |
+
attention_mask = None
|
1889 |
+
|
1890 |
+
try:
|
1891 |
+
# Tokenize batch
|
1892 |
+
q_tokens = self.tokenizer(
|
1893 |
+
queries,
|
1894 |
+
padding='max_length',
|
1895 |
+
truncation=True,
|
1896 |
+
max_length=self.max_length,
|
1897 |
+
return_tensors='tf'
|
1898 |
+
)
|
1899 |
+
p_tokens = self.tokenizer(
|
1900 |
+
positives,
|
1901 |
+
padding='max_length',
|
1902 |
+
truncation=True,
|
1903 |
+
max_length=self.max_length,
|
1904 |
+
return_tensors='tf'
|
1905 |
+
)
|
1906 |
+
|
1907 |
+
return q_tokens['input_ids'], p_tokens['input_ids'], attention_mask
|
1908 |
+
|
1909 |
+
except Exception as e:
|
1910 |
+
logger.error(f"Error preparing batch: {e}")
|
1911 |
+
# Emergency memory cleanup
|
1912 |
+
gc.collect()
|
1913 |
+
if tf.config.list_physical_devices('GPU'):
|
1914 |
+
tf.keras.backend.clear_session()
|
1915 |
+
raise
|
1916 |
+
|
1917 |
+
def estimate_total_pairs(self, dialogues: List[dict]) -> int:
|
1918 |
+
"""Estimate total number of training pairs including hard negatives."""
|
1919 |
+
base_pairs = sum(
|
1920 |
+
len([
|
1921 |
+
1 for i in range(len(d.get('turns', [])) - 1)
|
1922 |
+
if (d['turns'][i].get('speaker') == 'user' and
|
1923 |
+
d['turns'][i+1].get('speaker') == 'assistant')
|
1924 |
+
])
|
1925 |
+
for d in dialogues
|
1926 |
+
)
|
1927 |
+
# Account for hard negatives
|
1928 |
+
return base_pairs * (1 + self.neg_samples)
|
1929 |
+
|
1930 |
+
def cleanup(self):
|
1931 |
+
"""Cleanup resources and memory."""
|
1932 |
+
self.query_embeddings_cache.clear()
|
1933 |
+
gc.collect()
|
1934 |
+
if tf.config.list_physical_devices('GPU'):
|
1935 |
+
tf.keras.backend.clear_session()
|
conversation_summarizer.py
CHANGED
@@ -25,9 +25,9 @@ class DeviceAwareModel:
|
|
25 |
self.strategy = None
|
26 |
|
27 |
if self.device == 'GPU':
|
28 |
-
# Enable mixed precision for better performance
|
29 |
-
policy = tf.keras.mixed_precision.Policy('mixed_float16')
|
30 |
-
tf.keras.mixed_precision.set_global_policy(policy)
|
31 |
|
32 |
# Setup distribution strategy for multi-GPU if available
|
33 |
gpus = tf.config.list_physical_devices('GPU')
|
|
|
25 |
self.strategy = None
|
26 |
|
27 |
if self.device == 'GPU':
|
28 |
+
# # Enable mixed precision for better performance
|
29 |
+
# policy = tf.keras.mixed_precision.Policy('mixed_float16')
|
30 |
+
# tf.keras.mixed_precision.set_global_policy(policy)
|
31 |
|
32 |
# Setup distribution strategy for multi-GPU if available
|
33 |
gpus = tf.config.list_physical_devices('GPU')
|
environment_setup.py
CHANGED
@@ -122,14 +122,14 @@ class EnvironmentSetup:
|
|
122 |
except (subprocess.SubprocessError, FileNotFoundError):
|
123 |
logger.warning("Could not detect specific GPU model")
|
124 |
|
125 |
-
# Enable XLA
|
126 |
-
tf.config.optimizer.set_jit(True)
|
127 |
-
logger.info("XLA compilation enabled for Colab GPU")
|
128 |
|
129 |
-
# Set mixed precision policy
|
130 |
-
policy = tf.keras.mixed_precision.Policy('mixed_float16')
|
131 |
-
tf.keras.mixed_precision.set_global_policy(policy)
|
132 |
-
logger.info("Mixed precision training enabled (float16)")
|
133 |
|
134 |
strategy = tf.distribute.OneDeviceStrategy("/GPU:0")
|
135 |
return "GPU", strategy
|
@@ -187,20 +187,24 @@ class EnvironmentSetup:
|
|
187 |
stderr=subprocess.DEVNULL
|
188 |
).decode('utf-8').strip()
|
189 |
|
190 |
-
if "
|
|
|
|
|
|
|
|
|
191 |
# T4 optimizations
|
192 |
logger.info("Optimizing for Colab T4 GPU")
|
193 |
-
base_batch_size = min(base_batch_size * 2, 32)
|
194 |
elif "V100" in gpu_name:
|
195 |
# V100 optimizations
|
196 |
logger.info("Optimizing for Colab V100 GPU")
|
197 |
-
base_batch_size = min(base_batch_size * 3, 48)
|
198 |
except (subprocess.SubprocessError, FileNotFoundError):
|
199 |
logger.warning("Could not detect specific GPU model, using default settings")
|
200 |
|
201 |
elif self.device_type == "TPU":
|
202 |
# TPU optimizations
|
203 |
-
base_batch_size = min(base_batch_size * 4, 64)
|
204 |
logger.info("Optimizing for Colab TPU")
|
205 |
|
206 |
logger.info(f"Optimized batch size for Colab: {base_batch_size}")
|
|
|
122 |
except (subprocess.SubprocessError, FileNotFoundError):
|
123 |
logger.warning("Could not detect specific GPU model")
|
124 |
|
125 |
+
# # Enable XLA
|
126 |
+
# tf.config.optimizer.set_jit(True)
|
127 |
+
# logger.info("XLA compilation enabled for Colab GPU")
|
128 |
|
129 |
+
# # Set mixed precision policy
|
130 |
+
# policy = tf.keras.mixed_precision.Policy('mixed_float16')
|
131 |
+
# tf.keras.mixed_precision.set_global_policy(policy)
|
132 |
+
# logger.info("Mixed precision training enabled (float16)")
|
133 |
|
134 |
strategy = tf.distribute.OneDeviceStrategy("/GPU:0")
|
135 |
return "GPU", strategy
|
|
|
187 |
stderr=subprocess.DEVNULL
|
188 |
).decode('utf-8').strip()
|
189 |
|
190 |
+
if "A100" in gpu_name:
|
191 |
+
# A100 optimizations - has 40GB or 80GB variants
|
192 |
+
logger.info("Optimizing for Colab A100 GPU")
|
193 |
+
base_batch_size = min(base_batch_size * 8, 128) # A100 can handle much larger batches
|
194 |
+
elif "T4" in gpu_name:
|
195 |
# T4 optimizations
|
196 |
logger.info("Optimizing for Colab T4 GPU")
|
197 |
+
base_batch_size = min(base_batch_size * 2, 32)
|
198 |
elif "V100" in gpu_name:
|
199 |
# V100 optimizations
|
200 |
logger.info("Optimizing for Colab V100 GPU")
|
201 |
+
base_batch_size = min(base_batch_size * 3, 48)
|
202 |
except (subprocess.SubprocessError, FileNotFoundError):
|
203 |
logger.warning("Could not detect specific GPU model, using default settings")
|
204 |
|
205 |
elif self.device_type == "TPU":
|
206 |
# TPU optimizations
|
207 |
+
base_batch_size = min(base_batch_size * 4, 64)
|
208 |
logger.info("Optimizing for Colab TPU")
|
209 |
|
210 |
logger.info(f"Optimized batch size for Colab: {base_batch_size}")
|
gpu_monitor.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import tensorflow as tf
|
3 |
+
import faiss
|
4 |
+
import json
|
5 |
+
from pathlib import Path
|
6 |
+
from typing import List, Dict, Tuple, Optional, Generator
|
7 |
+
from dataclasses import dataclass
|
8 |
+
import threading
|
9 |
+
from queue import Queue
|
10 |
+
import gc
|
11 |
+
try:
|
12 |
+
from tqdm.notebook import tqdm
|
13 |
+
except ImportError:
|
14 |
+
from tqdm import tqdm
|
15 |
+
|
16 |
+
@dataclass
|
17 |
+
class GPUMemoryStats:
|
18 |
+
total: int
|
19 |
+
used: int
|
20 |
+
free: int
|
21 |
+
|
22 |
+
class GPUMemoryMonitor:
|
23 |
+
"""Monitor GPU memory usage with safe CPU fallback."""
|
24 |
+
def __init__(self):
|
25 |
+
self.has_gpu = False
|
26 |
+
try:
|
27 |
+
gpus = tf.config.list_physical_devices('GPU')
|
28 |
+
self.has_gpu = len(gpus) > 0
|
29 |
+
except:
|
30 |
+
pass
|
31 |
+
|
32 |
+
def get_memory_stats(self) -> Optional[GPUMemoryStats]:
|
33 |
+
"""Get current GPU memory statistics."""
|
34 |
+
if not self.has_gpu:
|
35 |
+
return None
|
36 |
+
|
37 |
+
try:
|
38 |
+
memory_info = tf.config.experimental.get_memory_info('GPU:0')
|
39 |
+
return GPUMemoryStats(
|
40 |
+
total=memory_info['peak'],
|
41 |
+
used=memory_info['current'],
|
42 |
+
free=memory_info['peak'] - memory_info['current']
|
43 |
+
)
|
44 |
+
except:
|
45 |
+
return None
|
46 |
+
|
47 |
+
def get_memory_usage(self) -> float:
|
48 |
+
"""Get current GPU memory usage as a percentage."""
|
49 |
+
if not self.has_gpu:
|
50 |
+
return 0.0
|
51 |
+
stats = self.get_memory_stats()
|
52 |
+
if stats is None or stats.total == 0:
|
53 |
+
return 0.0
|
54 |
+
return stats.used / stats.total
|
55 |
+
|
56 |
+
def should_reduce_batch_size(self) -> bool:
|
57 |
+
"""Check if batch size should be reduced based on memory usage."""
|
58 |
+
if not self.has_gpu:
|
59 |
+
return False
|
60 |
+
usage = self.get_memory_usage()
|
61 |
+
return usage > 0.90
|
62 |
+
|
63 |
+
def can_increase_batch_size(self) -> bool:
|
64 |
+
"""Check if batch size can be increased based on memory usage."""
|
65 |
+
if not self.has_gpu:
|
66 |
+
return True # Allow increase on CPU
|
67 |
+
usage = self.get_memory_usage()
|
68 |
+
return usage < 0.70
|
run_model_train.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from chatbot_model import RetrievalChatbot, ChatbotConfig
|
2 |
from environment_setup import EnvironmentSetup
|
3 |
from response_quality_checker import ResponseQualityChecker
|
@@ -33,11 +34,12 @@ def run_interactive_chat(chatbot, quality_checker):
|
|
33 |
|
34 |
def main():
|
35 |
# Initialize environment
|
|
|
36 |
env = EnvironmentSetup()
|
37 |
env.initialize()
|
38 |
|
39 |
-
DEBUG_SAMPLES =
|
40 |
-
EPOCHS =
|
41 |
TRAINING_DATA_PATH = 'processed_outputs/batch_group_0010.json'
|
42 |
|
43 |
# Optimize batch size for Colab
|
@@ -54,23 +56,16 @@ def main():
|
|
54 |
dialogues = RetrievalChatbot.load_training_data(data_path=TRAINING_DATA_PATH, debug_samples=DEBUG_SAMPLES)
|
55 |
|
56 |
# Initialize chatbot and verify FAISS index
|
57 |
-
with env.strategy.scope():
|
58 |
-
|
|
|
59 |
chatbot.verify_faiss_index()
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
q_tensor, p_tensor = chatbot.prepare_dataset(dialogues)
|
64 |
-
quality_checker = ResponseQualityChecker(chatbot=chatbot)
|
65 |
-
|
66 |
-
# Train model
|
67 |
-
logger.info("Starting training...")
|
68 |
-
chatbot.train(
|
69 |
-
q_pad=q_tensor,
|
70 |
-
p_pad=p_tensor,
|
71 |
epochs=EPOCHS,
|
72 |
batch_size=batch_size,
|
73 |
-
|
74 |
)
|
75 |
|
76 |
# Save final model
|
|
|
1 |
+
import tensorflow as tf
|
2 |
from chatbot_model import RetrievalChatbot, ChatbotConfig
|
3 |
from environment_setup import EnvironmentSetup
|
4 |
from response_quality_checker import ResponseQualityChecker
|
|
|
34 |
|
35 |
def main():
|
36 |
# Initialize environment
|
37 |
+
tf.keras.backend.clear_session()
|
38 |
env = EnvironmentSetup()
|
39 |
env.initialize()
|
40 |
|
41 |
+
DEBUG_SAMPLES = 15
|
42 |
+
EPOCHS = 5 if DEBUG_SAMPLES else 20
|
43 |
TRAINING_DATA_PATH = 'processed_outputs/batch_group_0010.json'
|
44 |
|
45 |
# Optimize batch size for Colab
|
|
|
56 |
dialogues = RetrievalChatbot.load_training_data(data_path=TRAINING_DATA_PATH, debug_samples=DEBUG_SAMPLES)
|
57 |
|
58 |
# Initialize chatbot and verify FAISS index
|
59 |
+
#with env.strategy.scope():
|
60 |
+
chatbot = RetrievalChatbot(config, dialogues)
|
61 |
+
chatbot.build_models()
|
62 |
chatbot.verify_faiss_index()
|
63 |
+
|
64 |
+
chatbot.train_streaming(
|
65 |
+
dialogues=dialogues,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
epochs=EPOCHS,
|
67 |
batch_size=batch_size,
|
68 |
+
use_lr_schedule=True,
|
69 |
)
|
70 |
|
71 |
# Save final model
|