JoeArmani
commited on
Commit
·
c111c20
1
Parent(s):
cc2577d
style refinements
Browse files
new_iteration/pipeline_config.py
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
from dataclasses import dataclass
|
2 |
-
|
3 |
-
@dataclass
|
4 |
-
class PipelineConfig:
|
5 |
-
"""Minimal pipeline config."""
|
6 |
-
max_length: int = 512 # max length if you want to skip long utterances
|
7 |
-
min_turns: int = 4 # minimum total turns (user + assistant)
|
8 |
-
min_user_words: int = 3 # min words in each user turn
|
9 |
-
debug: bool = True # enable debug prints
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
new_iteration/run_taskmaster_processor.py
CHANGED
@@ -1,30 +1,26 @@
|
|
1 |
import json
|
2 |
from datetime import datetime
|
3 |
from pathlib import Path
|
4 |
-
|
5 |
-
from data_augmentation.pipeline_config import PipelineConfig
|
6 |
-
from data_augmentation.taskmaster_processor import TaskmasterProcessor
|
7 |
|
8 |
def main():
|
9 |
-
#
|
10 |
-
|
|
|
|
|
11 |
max_length=512,
|
12 |
min_turns=4,
|
13 |
-
min_user_words=3
|
14 |
-
debug=True
|
15 |
)
|
16 |
-
|
17 |
-
# 2) Instantiate processor
|
18 |
-
base_dir = "datasets/taskmaster"
|
19 |
processor = TaskmasterProcessor(config)
|
20 |
|
21 |
-
#
|
22 |
dialogues = processor.load_taskmaster_dataset(base_dir=base_dir, max_examples=None)
|
23 |
|
24 |
-
#
|
25 |
final_dialogues = processor.filter_and_convert(dialogues)
|
26 |
|
27 |
-
#
|
28 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
29 |
output_dir = Path("processed_outputs")
|
30 |
output_dir.mkdir(parents=True, exist_ok=True)
|
|
|
1 |
import json
|
2 |
from datetime import datetime
|
3 |
from pathlib import Path
|
4 |
+
from taskmaster_processor import TaskmasterProcessor, RawDataProcessingConfig
|
|
|
|
|
5 |
|
6 |
def main():
|
7 |
+
# Setup config and processor
|
8 |
+
base_dir = "datasets/taskmaster"
|
9 |
+
config = RawDataProcessingConfig(
|
10 |
+
debug=True,
|
11 |
max_length=512,
|
12 |
min_turns=4,
|
13 |
+
min_user_words=3
|
|
|
14 |
)
|
|
|
|
|
|
|
15 |
processor = TaskmasterProcessor(config)
|
16 |
|
17 |
+
# Load dialogues
|
18 |
dialogues = processor.load_taskmaster_dataset(base_dir=base_dir, max_examples=None)
|
19 |
|
20 |
+
# Filter and convert dialogues
|
21 |
final_dialogues = processor.filter_and_convert(dialogues)
|
22 |
|
23 |
+
# Save processed dialogues
|
24 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
25 |
output_dir = Path("processed_outputs")
|
26 |
output_dir.mkdir(parents=True, exist_ok=True)
|
new_iteration/taskmaster_processor.py
CHANGED
@@ -19,27 +19,29 @@ class TaskmasterDialogue:
|
|
19 |
|
20 |
def validate(self) -> bool:
|
21 |
return bool(self.conversation_id and isinstance(self.turns, list))
|
22 |
-
|
23 |
-
class
|
24 |
"""
|
25 |
-
|
26 |
"""
|
27 |
def __init__(
|
28 |
self,
|
29 |
debug: bool = True,
|
|
|
30 |
min_turns: int = 2,
|
31 |
min_user_words: int = 3
|
32 |
):
|
33 |
self.debug = debug
|
|
|
34 |
self.min_turns = min_turns
|
35 |
self.min_user_words = min_user_words
|
36 |
|
37 |
class TaskmasterProcessor:
|
38 |
"""
|
39 |
-
|
40 |
-
|
41 |
"""
|
42 |
-
def __init__(self, config:
|
43 |
self.config = config
|
44 |
|
45 |
def load_taskmaster_dataset(
|
@@ -48,20 +50,20 @@ class TaskmasterProcessor:
|
|
48 |
max_examples: Optional[int] = None
|
49 |
) -> List[TaskmasterDialogue]:
|
50 |
"""
|
51 |
-
Load
|
52 |
-
Combines scenario text + conversation utterances to detect domain more robustly.
|
53 |
"""
|
54 |
required_files = {
|
55 |
"self-dialogs": "self-dialogs.json",
|
56 |
"woz-dialogs": "woz-dialogs.json",
|
57 |
-
"ontology": "ontology.json",
|
58 |
}
|
59 |
-
|
|
|
60 |
missing = [k for k, v in required_files.items() if not Path(base_dir, v).exists()]
|
61 |
if missing:
|
62 |
raise FileNotFoundError(f"Missing Taskmaster files: {missing}")
|
63 |
|
64 |
-
#
|
65 |
ontology_path = Path(base_dir, required_files["ontology"])
|
66 |
with open(ontology_path, 'r', encoding='utf-8') as f:
|
67 |
ontology = json.load(f)
|
@@ -70,6 +72,7 @@ class TaskmasterProcessor:
|
|
70 |
|
71 |
dialogues: List[TaskmasterDialogue] = []
|
72 |
|
|
|
73 |
file_keys = ["self-dialogs", "woz-dialogs"]
|
74 |
for file_key in file_keys:
|
75 |
file_path = Path(base_dir, required_files[file_key])
|
@@ -81,14 +84,14 @@ class TaskmasterProcessor:
|
|
81 |
instruction_id = d.get("instruction_id", None)
|
82 |
scenario_text = d.get("scenario", "")
|
83 |
|
84 |
-
#
|
85 |
utterances = d.get("utterances", [])
|
86 |
turns = self._process_utterances(utterances)
|
87 |
|
88 |
-
#
|
89 |
domain = self._extract_domain(scenario_text, turns)
|
90 |
|
91 |
-
#
|
92 |
new_dlg = TaskmasterDialogue(
|
93 |
conversation_id=conversation_id,
|
94 |
instruction_id=instruction_id,
|
@@ -115,7 +118,7 @@ class TaskmasterProcessor:
|
|
115 |
txt = turn.get('text', '').lower()
|
116 |
combined_text += " " + txt
|
117 |
|
118 |
-
#
|
119 |
domain_patterns = {
|
120 |
'restaurant': r'\b(restaurant|dining|food|reservation|table|menu|cuisine|eat|hungry)\b',
|
121 |
'movie': r'\b(movie|cinema|film|ticket|showtime|theater|flick|screening)\b',
|
@@ -125,12 +128,12 @@ class TaskmasterProcessor:
|
|
125 |
'auto': r'\b(car|vehicle|repair|maintenance|mechanic|oil\s?change)\b'
|
126 |
}
|
127 |
|
128 |
-
for
|
129 |
if re.search(pattern, combined_text):
|
130 |
# Optional: print if debug
|
131 |
if self.config.debug:
|
132 |
-
print(f"Matched domain: {
|
133 |
-
return
|
134 |
|
135 |
if self.config.debug:
|
136 |
print("No domain match, returning 'other'")
|
@@ -138,30 +141,26 @@ class TaskmasterProcessor:
|
|
138 |
|
139 |
def _process_utterances(self, utterances: List[Dict[str, Any]]) -> List[Dict[str, str]]:
|
140 |
"""
|
141 |
-
Convert
|
142 |
-
Skip
|
143 |
"""
|
144 |
cleaned_turns = []
|
145 |
for utt in utterances:
|
146 |
speaker = 'assistant' if utt.get('speaker') == 'ASSISTANT' else 'user'
|
147 |
raw_text = utt.get('text', '').strip()
|
148 |
|
149 |
-
#
|
150 |
text = self._clean_text(raw_text)
|
151 |
|
152 |
-
#
|
153 |
-
if not text:
|
154 |
-
continue
|
155 |
-
if self._is_numeric_line(text):
|
156 |
continue
|
157 |
|
158 |
-
#
|
159 |
-
|
160 |
-
if len(text.split()) < 2:
|
161 |
-
# Optionally keep "ok" or "yes" if you'd like, but let's skip them to keep quality up
|
162 |
continue
|
163 |
|
164 |
-
#
|
165 |
cleaned_turns.append({
|
166 |
'speaker': speaker,
|
167 |
'text': text
|
@@ -170,29 +169,24 @@ class TaskmasterProcessor:
|
|
170 |
|
171 |
def _clean_text(self, text: str) -> str:
|
172 |
"""
|
173 |
-
|
174 |
-
Adjust to your needs.
|
175 |
"""
|
176 |
-
#
|
177 |
text = re.sub(r'\s+', ' ', text)
|
178 |
-
# Example: remove trailing punctuation or repeated punctuation
|
179 |
-
# e.g. "Sure!!!" => "Sure!"
|
180 |
text = re.sub(r'([!?.,])\1+', r'\1', text)
|
181 |
return text.strip()
|
182 |
|
183 |
def _is_numeric_line(self, text: str) -> bool:
|
184 |
"""
|
185 |
Return True if line is purely digits/punctuation/spaces,
|
186 |
-
e.g. "4 3 13"
|
187 |
"""
|
188 |
pattern = r'^[\s]*[\d]+([\s\d.,]+)*[\s]*$'
|
189 |
return bool(re.match(pattern, text))
|
190 |
|
191 |
def filter_and_convert(self, dialogues: List[TaskmasterDialogue]) -> List[Dict]:
|
192 |
"""
|
193 |
-
Filter out dialogues that don't meet min
|
194 |
-
then convert them to final pipeline format:
|
195 |
-
|
196 |
{
|
197 |
"dialogue_id": "...",
|
198 |
"domain": "...",
|
@@ -204,12 +198,11 @@ class TaskmasterProcessor:
|
|
204 |
if not dlg.validate():
|
205 |
continue
|
206 |
|
207 |
-
#
|
208 |
if len(dlg.turns) < self.config.min_turns:
|
209 |
continue
|
210 |
|
211 |
-
#
|
212 |
-
# E.g. user must have >= 3 words
|
213 |
keep = True
|
214 |
for turn in dlg.turns:
|
215 |
if turn['speaker'] == 'user':
|
@@ -230,4 +223,4 @@ class TaskmasterProcessor:
|
|
230 |
|
231 |
if self.config.debug:
|
232 |
print(f"[TaskmasterProcessor] Filtered down to {len(results)} dialogues after cleaning.")
|
233 |
-
return results
|
|
|
19 |
|
20 |
def validate(self) -> bool:
|
21 |
return bool(self.conversation_id and isinstance(self.turns, list))
|
22 |
+
|
23 |
+
class RawDataProcessingConfig:
|
24 |
"""
|
25 |
+
Simple config for raw dataset processing
|
26 |
"""
|
27 |
def __init__(
|
28 |
self,
|
29 |
debug: bool = True,
|
30 |
+
max_length: int = 512,
|
31 |
min_turns: int = 2,
|
32 |
min_user_words: int = 3
|
33 |
):
|
34 |
self.debug = debug
|
35 |
+
self.max_length = max_length
|
36 |
self.min_turns = min_turns
|
37 |
self.min_user_words = min_user_words
|
38 |
|
39 |
class TaskmasterProcessor:
|
40 |
"""
|
41 |
+
Load Taskmaster-1 dialogues, extracts domain.
|
42 |
+
Clean, filter, save to pipeline format.
|
43 |
"""
|
44 |
+
def __init__(self, config: RawDataProcessingConfig):
|
45 |
self.config = config
|
46 |
|
47 |
def load_taskmaster_dataset(
|
|
|
50 |
max_examples: Optional[int] = None
|
51 |
) -> List[TaskmasterDialogue]:
|
52 |
"""
|
53 |
+
Load & parse Taskmaster-1 JSON for self-dialogs & woz-dialogs.
|
|
|
54 |
"""
|
55 |
required_files = {
|
56 |
"self-dialogs": "self-dialogs.json",
|
57 |
"woz-dialogs": "woz-dialogs.json",
|
58 |
+
"ontology": "ontology.json",
|
59 |
}
|
60 |
+
|
61 |
+
# Check for missing files
|
62 |
missing = [k for k, v in required_files.items() if not Path(base_dir, v).exists()]
|
63 |
if missing:
|
64 |
raise FileNotFoundError(f"Missing Taskmaster files: {missing}")
|
65 |
|
66 |
+
# Load ontology
|
67 |
ontology_path = Path(base_dir, required_files["ontology"])
|
68 |
with open(ontology_path, 'r', encoding='utf-8') as f:
|
69 |
ontology = json.load(f)
|
|
|
72 |
|
73 |
dialogues: List[TaskmasterDialogue] = []
|
74 |
|
75 |
+
# Process each file
|
76 |
file_keys = ["self-dialogs", "woz-dialogs"]
|
77 |
for file_key in file_keys:
|
78 |
file_path = Path(base_dir, required_files[file_key])
|
|
|
84 |
instruction_id = d.get("instruction_id", None)
|
85 |
scenario_text = d.get("scenario", "")
|
86 |
|
87 |
+
# Handle utterances
|
88 |
utterances = d.get("utterances", [])
|
89 |
turns = self._process_utterances(utterances)
|
90 |
|
91 |
+
# Detect Domain
|
92 |
domain = self._extract_domain(scenario_text, turns)
|
93 |
|
94 |
+
# Build the object
|
95 |
new_dlg = TaskmasterDialogue(
|
96 |
conversation_id=conversation_id,
|
97 |
instruction_id=instruction_id,
|
|
|
118 |
txt = turn.get('text', '').lower()
|
119 |
combined_text += " " + txt
|
120 |
|
121 |
+
# Domain patterns
|
122 |
domain_patterns = {
|
123 |
'restaurant': r'\b(restaurant|dining|food|reservation|table|menu|cuisine|eat|hungry)\b',
|
124 |
'movie': r'\b(movie|cinema|film|ticket|showtime|theater|flick|screening)\b',
|
|
|
128 |
'auto': r'\b(car|vehicle|repair|maintenance|mechanic|oil\s?change)\b'
|
129 |
}
|
130 |
|
131 |
+
for domain, pattern in domain_patterns.items():
|
132 |
if re.search(pattern, combined_text):
|
133 |
# Optional: print if debug
|
134 |
if self.config.debug:
|
135 |
+
print(f"Matched domain: {domain} in scenario/turns")
|
136 |
+
return domain
|
137 |
|
138 |
if self.config.debug:
|
139 |
print("No domain match, returning 'other'")
|
|
|
141 |
|
142 |
def _process_utterances(self, utterances: List[Dict[str, Any]]) -> List[Dict[str, str]]:
|
143 |
"""
|
144 |
+
Convert "utterances" to a cleaned List -> (speaker, text).
|
145 |
+
Skip lines that are numeric, too short, or empty.
|
146 |
"""
|
147 |
cleaned_turns = []
|
148 |
for utt in utterances:
|
149 |
speaker = 'assistant' if utt.get('speaker') == 'ASSISTANT' else 'user'
|
150 |
raw_text = utt.get('text', '').strip()
|
151 |
|
152 |
+
# Text cleaning
|
153 |
text = self._clean_text(raw_text)
|
154 |
|
155 |
+
# Skip blank or numeric lines (e.g. "4 3 13")
|
156 |
+
if not text or self._is_numeric_line(text):
|
|
|
|
|
157 |
continue
|
158 |
|
159 |
+
# Skip too short (no training benefit from 1-word user turns). E.g. "ok","yes", etc.
|
160 |
+
if len(text.split()) < 3:
|
|
|
|
|
161 |
continue
|
162 |
|
163 |
+
# Add to cleaned turns
|
164 |
cleaned_turns.append({
|
165 |
'speaker': speaker,
|
166 |
'text': text
|
|
|
169 |
|
170 |
def _clean_text(self, text: str) -> str:
|
171 |
"""
|
172 |
+
Simple text normalization
|
|
|
173 |
"""
|
174 |
+
# Strip multiple spaces, remove unnecessary punctuation
|
175 |
text = re.sub(r'\s+', ' ', text)
|
|
|
|
|
176 |
text = re.sub(r'([!?.,])\1+', r'\1', text)
|
177 |
return text.strip()
|
178 |
|
179 |
def _is_numeric_line(self, text: str) -> bool:
|
180 |
"""
|
181 |
Return True if line is purely digits/punctuation/spaces,
|
182 |
+
e.g. "4 3 13" and similar found in Taskmaster-1 dataset.
|
183 |
"""
|
184 |
pattern = r'^[\s]*[\d]+([\s\d.,]+)*[\s]*$'
|
185 |
return bool(re.match(pattern, text))
|
186 |
|
187 |
def filter_and_convert(self, dialogues: List[TaskmasterDialogue]) -> List[Dict]:
|
188 |
"""
|
189 |
+
Filter out dialogues that don't meet min length requirements. Convert to pipeline format.
|
|
|
|
|
190 |
{
|
191 |
"dialogue_id": "...",
|
192 |
"domain": "...",
|
|
|
198 |
if not dlg.validate():
|
199 |
continue
|
200 |
|
201 |
+
# Skip if too few turns
|
202 |
if len(dlg.turns) < self.config.min_turns:
|
203 |
continue
|
204 |
|
205 |
+
# Skip if any user turn is too short
|
|
|
206 |
keep = True
|
207 |
for turn in dlg.turns:
|
208 |
if turn['speaker'] == 'user':
|
|
|
223 |
|
224 |
if self.config.debug:
|
225 |
print(f"[TaskmasterProcessor] Filtered down to {len(results)} dialogues after cleaning.")
|
226 |
+
return results
|