JoeArmani commited on
Commit
e5be70f
·
1 Parent(s): 7a0020b

reranker scoring

Browse files
chatbot_model.py CHANGED
@@ -10,7 +10,6 @@ from pathlib import Path
10
  import datetime
11
  import faiss
12
  import gc
13
-
14
  import re
15
  from tf_data_pipeline import TFDataPipeline
16
  from response_quality_checker import ResponseQualityChecker
@@ -280,15 +279,6 @@ class RetrievalChatbot(DeviceAwareModel):
280
 
281
  dummy_input = tf.zeros((1, config.max_context_token_limit), dtype=tf.int32)
282
  _ = chatbot.encoder(dummy_input, training=False)
283
-
284
- # # Then load your custom weights
285
- # custom_weights_path = load_dir / "encoder_custom_weights.weights.h5"
286
- # if custom_weights_path.exists():
287
- # logger.info(f"Loading custom top-level weights from {custom_weights_path}")
288
- # chatbot.encoder.load_weights(str(custom_weights_path))
289
- # logger.info("Custom top-level weights loaded successfully.")
290
- # else:
291
- # logger.warning(f"Custom weights file not found at {custom_weights_path}.")
292
 
293
  # 4) Load tokenizer
294
  chatbot.tokenizer = AutoTokenizer.from_pretrained(load_dir / "tokenizer")
@@ -361,7 +351,10 @@ class RetrievalChatbot(DeviceAwareModel):
361
  self.tokenizer.save_pretrained(save_dir / "tokenizer")
362
 
363
  logger.info(f"Models and tokenizer saved to {save_dir}.")
364
-
 
 
 
365
  def retrieve_responses_cross_encoder(
366
  self,
367
  query: str,
@@ -391,31 +384,34 @@ class RetrievalChatbot(DeviceAwareModel):
391
  logger.info(f"Summarized Query: {query}")
392
 
393
  detected_domain = self.detect_domain_from_query(query)
394
- logger.debug(f"Detected domain '{detected_domain}' for query: {query}")
395
 
396
- # 2) Retrieve more initial candidates from FAISS
397
  initial_k = min(top_k * 10, len(self.data_pipeline.response_pool))
398
- dense_candidates = self.retrieve_responses_faiss(query, domain=detected_domain, top_k=initial_k)
399
-
400
- boosted_candidates = dense_candidates
401
 
402
- # 4) If we have a cross-encoder, re-rank these boosted candidates
 
 
403
  if not reranker:
404
- logger.warning("No CrossEncoderReranker provided; creating a default one.")
405
  reranker = CrossEncoderReranker(model_name="cross-encoder/ms-marco-MiniLM-L-12-v2")
406
 
407
- texts = [item[0] for item in boosted_candidates]
408
  ce_scores = reranker.rerank(query, texts, max_length=256)
409
 
410
  # Combine cross-encoder score with the base FAISS score (simple multiplicative approach)
411
  final_candidates = []
412
- for (resp_text, faiss_score), ce_score in zip(boosted_candidates, ce_scores):
413
  # TODO: dial this in.
414
- alpha = 0.8
415
- combined_score = alpha * ce_score + (1 - alpha) * faiss_score
 
 
 
 
416
  length_adjusted_score = self.length_adjust_score(resp_text, combined_score)
417
  #combined_score = ce_score * faiss_score
418
- final_candidates.append((resp_text, combined_score))
 
419
 
420
  # Sort descending by combined score
421
  final_candidates.sort(key=lambda x: x[1], reverse=True)
@@ -434,29 +430,34 @@ class RetrievalChatbot(DeviceAwareModel):
434
 
435
  def extract_keywords(self, query: str) -> List[str]:
436
  """
437
- Extract keywords from the query based on DOMAIN_KEYWORDS.
438
  """
439
  query_lower = query.lower()
440
- keywords = set()
441
- for domain, kws in self.DOMAIN_KEYWORDS.items():
442
- for kw in kws:
443
  if kw in query_lower:
444
- keywords.add(kw)
445
- return list(keywords)
446
 
447
- def length_adjust_score(resp_text: str, base_score: float) -> float:
448
- # Apply a short penalty
449
- words = len(resp_text.split())
450
- if words < 3:
451
- # big penalty or skip entirely
452
- return base_score * 0.1 # or base_score - 0.01
453
-
454
- # Add a mild bonus for lines that exceed 12 words:
455
- if words > 12:
456
- # e.g. +0.002 * (words - 12)
457
- bonus = 0.002 * (words - 12)
 
 
 
 
 
458
  base_score += bonus
459
-
460
  return base_score
461
 
462
  def detect_domain_from_query(self, query: str) -> str:
@@ -464,12 +465,12 @@ class RetrievalChatbot(DeviceAwareModel):
464
  Detect the domain of the query based on keywords.
465
  """
466
  domain_patterns = {
467
- 'restaurant': r'\b(restaurant|dining|food|dine|reservation|table|menu|cuisine|eat|place\s?to\s?eat|hungry|chef|dish|meal|fork|knife|spoon|brunch|bistro|buffet|catering|gourmet|fast\s?food|fine\s?dining|takeaway|delivery|restaurant\s?booking)\b',
468
- 'movie': r'\b(movie|cinema|film|ticket|showtime|showing|theater|flick|screening|film\s?ticket|film\s?show|blockbuster|premiere|trailer|director|actor|actress|plot|genre|screen|sequel|animation|documentary)\b',
469
- 'ride_share': r'\b(ride|taxi|uber|lyft|car\s?service|pickup|dropoff|driver|cab|hailing|rideshare|ride\s?hailing|carpool|chauffeur|transit|transportation|hail\s?ride)\b',
470
- 'coffee': r'\b(coffee|café|cafe|starbucks|espresso|latte|mocha|americano|barista|brew|cappuccino|macchiato|iced\s?coffee|cold\s?brew|espresso\s?machine|coffee\s?shop|tea|chai|java|bean|roast|decaf)\b',
471
- 'pizza': r'\b(pizza|delivery|order\s?food|pepperoni|topping|pizzeria|slice|pie|margherita|deep\s?dish|thin\s?crust|cheese|oven|tossed|sauce|garlic\s?bread|calzone)\b',
472
- 'auto': r'\b(car|vehicle|repair|maintenance|mechanic|oil\s?change|garage|auto\s?shop|tire|check\s?engine|battery|transmission|brake|engine\s?diagnostics|carwash|detail|alignment|exhaust|spark\s?plug|dashboard)\b',
473
  }
474
 
475
  # Check for matches
@@ -479,20 +480,20 @@ class RetrievalChatbot(DeviceAwareModel):
479
 
480
  return 'other'
481
 
482
- def is_numeric_response(text: str) -> bool:
483
  """
484
- Return True if `text` is purely digits (and/or spaces).
485
- e.g.: "4 3 13" -> True, " 42 " -> True, "hello 42" -> False
486
  """
487
- pattern = r'^\s*[0-9]+(\s+[0-9]+)*\s*$'
488
- return bool(re.match(pattern, text))
489
 
490
  def retrieve_responses_faiss(
491
  self,
492
  query: str,
493
  domain: str = 'other',
494
  top_k: int = 5,
495
- boost_factor: float = 1.3
496
  ) -> List[Tuple[str, float]]:
497
  """
498
  Retrieve top-k responses from the FAISS index (IndexFlatIP) given a user query.
@@ -511,117 +512,65 @@ class RetrievalChatbot(DeviceAwareModel):
511
  q_emb_np = q_emb.reshape(1, -1).astype('float32')
512
 
513
  # Search the index
514
- distances, indices = self.data_pipeline.index.search(q_emb_np, top_k * 10) # Adjust multiplier as needed
515
 
516
  # IndexFlatIP: 'distances' are inner products (cosine similarities for normalized vectors)
517
  candidates = []
518
  for rank, idx in enumerate(indices[0]):
519
- if idx == -1:
520
- continue # FAISS may return -1 for invalid indices
521
  response = self.data_pipeline.response_pool[idx]
522
- text = response.get('text', '')
523
  cand_domain = response.get('domain', 'other')
524
  score = distances[0][rank]
525
 
526
- # Filter out numeric responses and very short texts
527
- if not self.is_numeric_response(text) and len(text.split()) >= self.config.min_text_length:
528
- candidates.append((text, cand_domain, score))
529
-
 
 
 
 
 
530
  if not candidates:
531
- logger.warning("No valid candidates found after initial filtering.")
532
  return []
533
 
534
  # Sort candidates by score descending
535
  candidates.sort(key=lambda x: x[2], reverse=True)
536
 
537
  # Filter in-domain responses
538
- if domain != 'other':
539
- in_domain_responses = [c for c in candidates if c[1] == domain]
540
- if not in_domain_responses:
541
- logger.info(f"No in-domain responses found for domain '{domain}'. Falling back to all candidates.")
542
- in_domain_responses = candidates
543
- else:
544
- in_domain_responses = candidates
545
 
546
  # Boost responses containing query keywords
547
  query_keywords = self.extract_keywords(query)
548
- boosted_responses = []
549
- for resp_text, resp_domain, score in in_domain_responses:
550
- if any(kw in resp_text.lower() for kw in query_keywords):
551
- boosted_score = score * boost_factor
552
- logger.debug(f"Boosting response: '{resp_text}' by factor {boost_factor}")
553
- else:
554
- boosted_score = score
555
- boosted_responses.append((resp_text, boosted_score))
 
 
 
 
 
556
 
557
  # Sort boosted responses
558
- boosted_responses.sort(key=lambda x: x[1], reverse=True)
559
-
560
- # Select top_k responses
561
- top_responses = boosted_responses[:top_k]
562
- logger.debug(f"Top {top_k} responses selected.")
563
-
564
- return top_responses
565
- # def retrieve_responses_faiss(
566
- # self,
567
- # query: str,
568
- # domain: str = 'other',
569
- # top_k: int = 5,
570
- # boost_factor: float = 1.3
571
- # ) -> List[Tuple[str, float]]:
572
- # """
573
- # Retrieve top-k responses from the FAISS index (IndexFlatIP) given a user query.
574
-
575
- # Args:
576
- # query: The user input text
577
- # top_k: Number of top results to return
578
-
579
- # Returns:
580
- # List of (response_text, similarity) sorted by descending similarity
581
- # """
582
- # # Encode the query
583
- # q_emb = self.data_pipeline.encode_query(query)
584
- # q_emb_np = q_emb.reshape(1, -1).astype('float32')
585
-
586
- # # Search the index
587
- # distances, indices = self.data_pipeline.index.search(q_emb_np, top_k * 10) # distances: shape [1, k], indices: shape [1, k]
588
-
589
- # # IndexFlatIP: 'distances' are cosine similarities in [-1, +1].
590
- # candidates = []
591
- # for rank, idx in enumerate(indices[0]):
592
- # text = self.response_pool[idx]['text']
593
- # cand_domain = self.response_pool[idx]['domain']
594
- # score = distances[0][rank]
595
-
596
- # # filter out responses with only numbers or too few words
597
- # word_count = len(text.split())
598
- # if not self.is_numeric_resonse(text) and word_count >= 2:
599
- # candidates.append((text, cand_domain, score))
600
-
601
- # # Filter to in-domain responses
602
- # candidates.sort(key=lambda x: x[2], reverse=True)
603
- # in_domain_responses = [(text, score) for (text, cand_domain, score) in candidates if cand_domain == domain]
604
 
605
- # # Boost keyword matching responses
606
- # query_keywords = self.extract_keywords(query)
607
- # boosted_responses = []
608
- # for (resp_text, domain, score) in in_domain_responses:
609
- # # Check if any keyword is present in the response text
610
- # for kw in query_keywords:
611
- # if kw in resp_text.lower():
612
- # boosted_score = score * boost_factor
613
- # print(f"Boosting response: '{resp_text}' by factor {boost_factor}")
614
- # break
615
- # else:
616
- # boosted_score = score
617
- # boosted_responses.append((resp_text, domain, boosted_score))
618
-
619
- # # Debug
620
- # logger.debug("\nFAISS Search Results (top 15 for debug):")
621
- # for i, (resp, score) in enumerate(boosted_responses[:15], start=1):
622
- # logger.debug(f"{i}. Score: {score:.4f} -> {resp[:60]}")
623
-
624
- # return boosted_responses[:top_k]
625
 
626
  def chat(
627
  self,
 
10
  import datetime
11
  import faiss
12
  import gc
 
13
  import re
14
  from tf_data_pipeline import TFDataPipeline
15
  from response_quality_checker import ResponseQualityChecker
 
279
 
280
  dummy_input = tf.zeros((1, config.max_context_token_limit), dtype=tf.int32)
281
  _ = chatbot.encoder(dummy_input, training=False)
 
 
 
 
 
 
 
 
 
282
 
283
  # 4) Load tokenizer
284
  chatbot.tokenizer = AutoTokenizer.from_pretrained(load_dir / "tokenizer")
 
351
  self.tokenizer.save_pretrained(save_dir / "tokenizer")
352
 
353
  logger.info(f"Models and tokenizer saved to {save_dir}.")
354
+
355
+ def sigmoid(self, x: float) -> float:
356
+ return 1 / (1 + np.exp(-x))
357
+
358
  def retrieve_responses_cross_encoder(
359
  self,
360
  query: str,
 
384
  logger.info(f"Summarized Query: {query}")
385
 
386
  detected_domain = self.detect_domain_from_query(query)
387
+ #logger.debug(f"Detected domain '{detected_domain}' for query: {query}")
388
 
389
+ # Retrieve initial candidates from FAISS
390
  initial_k = min(top_k * 10, len(self.data_pipeline.response_pool))
391
+ faiss_candidates = self.retrieve_responses_faiss(query, domain=detected_domain, top_k=initial_k)
 
 
392
 
393
+ texts = [item[0] for item in faiss_candidates]
394
+
395
+ # Re-rank these boosted candidates
396
  if not reranker:
 
397
  reranker = CrossEncoderReranker(model_name="cross-encoder/ms-marco-MiniLM-L-12-v2")
398
 
 
399
  ce_scores = reranker.rerank(query, texts, max_length=256)
400
 
401
  # Combine cross-encoder score with the base FAISS score (simple multiplicative approach)
402
  final_candidates = []
403
+ for (resp_text, faiss_score), ce_score in zip(faiss_candidates, ce_scores):
404
  # TODO: dial this in.
405
+ ce_prob = self.sigmoid(ce_score) # ~ relevance in [0..1]
406
+ faiss_norm = (faiss_score + 1)/2.0
407
+ combined_score = 0.9 * ce_prob + 0.1 * faiss_norm
408
+ # alpha = 0.9
409
+ # print(f'CE SCORE: {ce_score} FAISS SCORE: {faiss_score}')
410
+ # combined_score = alpha * ce_score + (1 - alpha) * faiss_score
411
  length_adjusted_score = self.length_adjust_score(resp_text, combined_score)
412
  #combined_score = ce_score * faiss_score
413
+ #final_candidates.append((resp_text, combined_score))
414
+ final_candidates.append((resp_text, length_adjusted_score))
415
 
416
  # Sort descending by combined score
417
  final_candidates.sort(key=lambda x: x[1], reverse=True)
 
430
 
431
  def extract_keywords(self, query: str) -> List[str]:
432
  """
433
+ Return any domain keywords present in the query (lowercased).
434
  """
435
  query_lower = query.lower()
436
+ found = set()
437
+ for domain, kw_list in self.DOMAIN_KEYWORDS.items():
438
+ for kw in kw_list:
439
  if kw in query_lower:
440
+ found.add(kw)
441
+ return list(found)
442
 
443
+ def length_adjust_score(self, text: str, base_score: float) -> float:
444
+ """
445
+ Penalize very short lines or numeric lines; mildly reward longer lines.
446
+ Adjust carefully so you don't overshadow cross-encoder signals.
447
+ """
448
+ words = text.split()
449
+ wcount = len(words)
450
+
451
+ # Penalty if under 3 words
452
+ if wcount < 4:
453
+ return base_score * 0.8
454
+
455
+ # Bonus for lines > 12 words
456
+ if wcount > 12:
457
+ extra = min(wcount - 12, 8)
458
+ bonus = 0.0005 * extra
459
  base_score += bonus
460
+
461
  return base_score
462
 
463
  def detect_domain_from_query(self, query: str) -> str:
 
465
  Detect the domain of the query based on keywords.
466
  """
467
  domain_patterns = {
468
+ 'restaurant': r'\b(restaurant|restaurants?|dining|food|foods?|dine|reservation|reservations?|table|tables?|menu|menus?|cuisine|cuisines?|eat|eats?|place\s?to\s?eat|places\s?to\s?eat|hungry|chef|chefs?|dish|dishes?|meal|meals?|fork|forks?|knife|knives?|spoon|spoons?|brunch|bistro|buffet|buffets?|catering|caterings?|gourmet|fast\s?food|fine\s?dining|takeaway|takeaways?|delivery|deliveries|restaurant\s?booking)\b',
469
+ 'movie': r'\b(movie|movies?|cinema|cinemas?|film|films?|ticket|tickets?|showtime|showtimes?|showing|showings?|theater|theaters?|flick|flicks?|screening|screenings?|film\s?ticket|film\s?tickets?|film\s?show|film\s?shows?|blockbuster|blockbusters?|premiere|premieres?|trailer|trailers?|director|directors?|actor|actors?|actress|actresses?|plot|plots?|genre|genres?|screen|screens?|sequel|sequels?|animation|animations?|documentary|documentaries)\b',
470
+ 'ride_share': r'\b(ride|rides?|taxi|taxis?|uber|lyft|car\s?service|car\s?services?|pickup|pickups?|dropoff|dropoffs?|driver|drivers?|cab|cabs?|hailing|hailings?|rideshare|rideshares?|ride\s?hailing|ride\s?hailings?|carpool|carpools?|chauffeur|chauffeurs?|transit|transits?|transportation|transportations?|hail\s?ride|hail\s?rides?)\b',
471
+ 'coffee': r'\b(coffee|coffees?|café|cafés?|cafe|cafes?|starbucks|espresso|espressos?|latte|lattes?|mocha|mochas?|americano|americanos?|barista|baristas?|brew|brews?|cappuccino|cappuccinos?|macchiato|macchiatos?|iced\s?coffee|iced\s?coffees?|cold\s?brew|cold\s?brews?|espresso\s?machine|espresso\s?machines?|coffee\s?shop|coffee\s?shops?|tea|teas?|chai|chais?|java|javas?|bean|beans?|roast|roasts?|decaf)\b',
472
+ 'pizza': r'\b(pizza|pizzas?|delivery|deliveries|order\s?food|order\s?foods?|pepperoni|pepperonis?|topping|toppings?|pizzeria|pizzerias?|slice|slices?|pie|pies?|margherita|margheritas?|deep\s?dish|deep\s?dishes?|thin\s?crust|thin\s?crusts?|cheese|cheeses?|oven|ovens?|tossed|tosses?|sauce|sauces?|garlic\s?bread|garlic\s?breads?|calzone|calzones?)\b',
473
+ 'auto': r'\b(car|cars?|vehicle|vehicles?|repair|repairs?|maintenance|maintenances?|mechanic|mechanics?|oil\s?change|oil\s?changes?|garage|garages?|auto\s?shop|auto\s?shops?|tire|tires?|check\s?engine|check\s?engines?|battery|batteries?|transmission|transmissions?|brake|brakes?|engine\s?diagnostics|engine\s?diagnostic|carwash|carwashes?|detail|details?|alignment|alignments?|exhaust|exhausts?|spark\s?plug|spark\s?plugs?|dashboard|dashboards?)\b',
474
  }
475
 
476
  # Check for matches
 
480
 
481
  return 'other'
482
 
483
+ def is_numeric_response(self, text: str) -> bool:
484
  """
485
+ Return True if `text` is purely digits (and/or spaces),
486
+ with optional punctuation like '.' at the end.
487
  """
488
+ pattern = r'^[\s]*[\d]+([\s.,\d]+)*[\s]*$'
489
+ return bool(re.match(pattern, text.strip()))
490
 
491
  def retrieve_responses_faiss(
492
  self,
493
  query: str,
494
  domain: str = 'other',
495
  top_k: int = 5,
496
+ boost_factor: float = 1.05
497
  ) -> List[Tuple[str, float]]:
498
  """
499
  Retrieve top-k responses from the FAISS index (IndexFlatIP) given a user query.
 
512
  q_emb_np = q_emb.reshape(1, -1).astype('float32')
513
 
514
  # Search the index
515
+ distances, indices = self.data_pipeline.index.search(q_emb_np, top_k * 10)
516
 
517
  # IndexFlatIP: 'distances' are inner products (cosine similarities for normalized vectors)
518
  candidates = []
519
  for rank, idx in enumerate(indices[0]):
520
+ if idx < 0:
521
+ continue
522
  response = self.data_pipeline.response_pool[idx]
523
+ text = response.get('text', '').strip()
524
  cand_domain = response.get('domain', 'other')
525
  score = distances[0][rank]
526
 
527
+ # Skip purely numeric or extremely short text (fewer than 3 words):
528
+ words = text.split()
529
+ if len(words) < 4:
530
+ continue
531
+ if self.is_numeric_response(text):
532
+ continue
533
+
534
+ candidates.append((text, cand_domain, score))
535
+
536
  if not candidates:
537
+ logger.warning("No valid candidates found after initial numeric/length filtering.")
538
  return []
539
 
540
  # Sort candidates by score descending
541
  candidates.sort(key=lambda x: x[2], reverse=True)
542
 
543
  # Filter in-domain responses
544
+ in_domain = [c for c in candidates if c[1] == domain]
545
+ if not in_domain:
546
+ logger.info(f"No in-domain responses found for '{domain}'. Using all candidates.")
547
+ in_domain = candidates
 
 
 
548
 
549
  # Boost responses containing query keywords
550
  query_keywords = self.extract_keywords(query)
551
+ boosted = []
552
+ for (resp_text, resp_domain, score) in in_domain:
553
+ new_score = score
554
+ # If the domain is known AND the response text
555
+ # shares any query keywords, apply a small boost
556
+ if query_keywords and any(kw in resp_text.lower() for kw in query_keywords):
557
+ new_score *= boost_factor
558
+ #logger.debug(f"Boosting response: '{resp_text}' by factor {boost_factor}")
559
+
560
+ # Apply length penalty/bonus
561
+ new_score = self.length_adjust_score(resp_text, new_score)
562
+
563
+ boosted.append((resp_text, new_score))
564
 
565
  # Sort boosted responses
566
+ boosted.sort(key=lambda x: x[1], reverse=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
567
 
568
+ # Print top 10
569
+ for resp, score in boosted[:100]:
570
+ logger.debug(f"Candidate: '{resp}' with score {score}")
571
+
572
+ # 8) Return top_k
573
+ return boosted[:top_k]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
574
 
575
  def chat(
576
  self,
chatbot_validator.py CHANGED
@@ -31,41 +31,48 @@ class ChatbotValidator:
31
  # Basic domain-specific test queries (easy examples)
32
  # Taskmaster-1 and Schema-Guided style
33
  self.domain_queries = {
34
- 'restaurant': [
35
- "I'd like to make a reservation for dinner tonight.",
36
- "Can you book a table for 4 at an Italian restaurant?",
37
- "Is there any availability to dine tomorrow at 7pm?",
38
- "I'd like to cancel my reservation for tonight.",
39
- "What's the wait time for a table right now?"
 
 
 
 
 
 
 
40
  ],
41
- 'movie_tickets': [
42
- "I want to buy tickets for the new Marvel movie.",
43
- "Are there any showings of Avatar after 6pm?",
44
- "Can I get 3 tickets for the 8pm show?",
45
- "What movies are playing this weekend?",
46
- "Do you have any matinee showtimes available?"
47
- ],
48
- 'rideshare': [
49
- "I need a ride from the airport to downtown.",
50
- "How much would it cost to get to the mall?",
51
- "Can you book a car for tomorrow morning?",
52
- "Is there a driver available right now?",
53
- "What's the estimated arrival time for the driver?"
54
- ],
55
- 'services': [
56
- "I need to schedule an oil change for my car.",
57
- "When can I bring my car in for maintenance?",
58
- "Do you have any openings for auto repair today?",
59
- "How long will the service take?",
60
- "Can I get an estimate for brake repair?"
61
- ],
62
- 'events': [
63
- "I need tickets to the concert this weekend.",
64
- "What events are happening near me?",
65
- "Can I book seats for the basketball game?",
66
- "Are there any comedy shows tonight?",
67
- "How much are tickets to the theater?"
68
- ]
69
  }
70
 
71
  def run_validation(
@@ -237,13 +244,13 @@ class ChatbotValidator:
237
  is_confident = metrics.get('is_confident', False)
238
 
239
  logger.info(f"Domain: {domain} | Confidence: {'Yes' if is_confident else 'No'}")
240
- logger.info("Quality Metrics:")
241
- for k, v in metrics.items():
242
- if isinstance(v, (int, float)):
243
- logger.info(f" {k}: {v:.4f}")
244
 
245
- logger.info("Top 3 Responses:")
246
- for i, (resp_text, score) in enumerate(responses[:3], 1):
247
  logger.info(f"{i}) Score: {score:.4f} | {resp_text}")
248
  if i == 1 and not is_confident:
249
  logger.info(" [Low Confidence on Top Response]")
 
31
  # Basic domain-specific test queries (easy examples)
32
  # Taskmaster-1 and Schema-Guided style
33
  self.domain_queries = {
34
+ # 'restaurant': [
35
+ # "Hi, I have a question about your restaurant. Do they take reservations?",
36
+ # "I'd like to make a reservation for dinner tonight after 6pm. Is that time available?",
37
+ # "Can you recommend an Italian restaurant with wood-fired pizza?",
38
+ # "Is there parking available if we dine at your restaurant tomorrow evening?",
39
+ # "What's the average cost per plate at your restaurant?"
40
+ # # ],
41
+ 'movie': [
42
+ "How much are movie tickets for two people?",
43
+ "I'm looking for showings after 6pm?",
44
+ "Is this at the new theater with reclining seats?",
45
+ "Hi, I'm thinking about reserving tickets for the new movie.",
46
+ "What is the price for your largest popcorn?"
47
  ],
48
+ # 'ride_share': [
49
+ # "I need a ride from the airport to downtown.",
50
+ # "How much would it cost to get to the mall?",
51
+ # "Can you book a car for tomorrow morning?",
52
+ # "Is there a driver available right now?",
53
+ # "What's the estimated arrival time for the driver?"
54
+ # ],
55
+ # 'coffee': [
56
+ # "Can I get a latte with almond milk?",
57
+ # "Can I get a cappuccino with oat milk?",
58
+ # "Can I get a mocha with coconut milk?",
59
+ # "Can I get a cappuccino with almond milk?",
60
+ # "Can I get a mocha with oat milk?",
61
+ # ],
62
+ # 'pizza': [
63
+ # "Can I get a pizza with extra cheese?",
64
+ # "Can I get a pizza with mushrooms?",
65
+ # "Can I get a pizza with bell peppers?",
66
+ # "Can I get a pizza with onions?",
67
+ # "Can I get a pizza with olives?"
68
+ # ],
69
+ # 'auto': [
70
+ # "I need to schedule an oil change for my car.",
71
+ # "When can I bring my car in for maintenance?",
72
+ # "Do you have any openings for auto repair today?",
73
+ # "How long will the service take?",
74
+ # "Can I get an estimate for brake repair?"
75
+ #],
76
  }
77
 
78
  def run_validation(
 
244
  is_confident = metrics.get('is_confident', False)
245
 
246
  logger.info(f"Domain: {domain} | Confidence: {'Yes' if is_confident else 'No'}")
247
+ # logger.info("Quality Metrics:")
248
+ # for k, v in metrics.items():
249
+ # if isinstance(v, (int, float)):
250
+ # logger.info(f" {k}: {v:.4f}")
251
 
252
+ logger.info("Top 10 Responses:")
253
+ for i, (resp_text, score) in enumerate(responses[:10], 1):
254
  logger.info(f"{i}) Score: {score:.4f} | {resp_text}")
255
  if i == 1 and not is_confident:
256
  logger.info(" [Low Confidence on Top Response]")
new_iteration/run_taskmaster_processor.py CHANGED
@@ -9,7 +9,7 @@ def main():
9
  # 1) Setup config
10
  config = PipelineConfig(
11
  max_length=512,
12
- min_turns=3,
13
  min_user_words=3,
14
  debug=True
15
  )
 
9
  # 1) Setup config
10
  config = PipelineConfig(
11
  max_length=512,
12
+ min_turns=4,
13
  min_user_words=3,
14
  debug=True
15
  )
new_iteration/taskmaster_processor.py CHANGED
@@ -1,33 +1,52 @@
1
- import json
2
  import re
 
3
  from pathlib import Path
4
- from typing import List, Dict, Any, Optional
5
  from dataclasses import dataclass, field
6
 
7
- from pipeline_config import PipelineConfig
8
-
9
  @dataclass
10
  class TaskmasterDialogue:
11
- """Structured representation of a Taskmaster-1 dialogue."""
12
  conversation_id: str
13
  instruction_id: Optional[str]
14
  scenario: Optional[str]
15
- domain: str
16
- turns: List[Dict[str, Any]] = field(default_factory=list)
 
 
 
 
17
 
18
  def validate(self) -> bool:
19
- """Check if this dialogue has an ID and a list of turns."""
20
  return bool(self.conversation_id and isinstance(self.turns, list))
21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  class TaskmasterProcessor:
23
  """
24
- Loads Taskmaster-1 dialogues, extracts domain from scenario,
25
- filters them, and outputs a final pipeline-friendly format.
26
  """
27
  def __init__(self, config: PipelineConfig):
28
  self.config = config
29
 
30
- def load_taskmaster_dataset(self, base_dir: str, max_examples: Optional[int] = None) -> List[TaskmasterDialogue]:
 
 
 
 
31
  """
32
  Load and parse Taskmaster JSON for self-dialogs & woz-dialogs (Taskmaster-1).
33
  Combines scenario text + conversation utterances to detect domain more robustly.
@@ -35,14 +54,14 @@ class TaskmasterProcessor:
35
  required_files = {
36
  "self-dialogs": "self-dialogs.json",
37
  "woz-dialogs": "woz-dialogs.json",
38
- "ontology": "ontology.json", # we might not actively use this, but let's expect it
39
  }
40
- # Check for missing
41
  missing = [k for k, v in required_files.items() if not Path(base_dir, v).exists()]
42
  if missing:
43
  raise FileNotFoundError(f"Missing Taskmaster files: {missing}")
44
 
45
- # Load ontology (optional usage)
46
  ontology_path = Path(base_dir, required_files["ontology"])
47
  with open(ontology_path, 'r', encoding='utf-8') as f:
48
  ontology = json.load(f)
@@ -51,7 +70,6 @@ class TaskmasterProcessor:
51
 
52
  dialogues: List[TaskmasterDialogue] = []
53
 
54
- # We'll read the 2 main files
55
  file_keys = ["self-dialogs", "woz-dialogs"]
56
  for file_key in file_keys:
57
  file_path = Path(base_dir, required_files[file_key])
@@ -61,26 +79,23 @@ class TaskmasterProcessor:
61
  for d in raw_data:
62
  conversation_id = d.get("conversation_id", "")
63
  instruction_id = d.get("instruction_id", None)
64
- scenario_text = d.get("scenario", "") # old scenario approach
65
-
66
- # Collect utterances -> turns
67
  utterances = d.get("utterances", [])
68
  turns = self._process_utterances(utterances)
69
 
70
- # Instead of only using scenario_text, we combine scenario + turn texts.
71
- # We'll pass everything to _extract_domain
72
- domain = self._extract_domain(
73
- scenario_text,
74
- turns # pass the entire turn list so we can pick up domain keywords
75
- )
76
 
77
- # Create a structured object
78
  new_dlg = TaskmasterDialogue(
79
  conversation_id=conversation_id,
80
  instruction_id=instruction_id,
81
  scenario=scenario_text,
82
  domain=domain,
83
- turns=turns
 
84
  )
85
  dialogues.append(new_dlg)
86
 
@@ -93,85 +108,126 @@ class TaskmasterProcessor:
93
 
94
  def _extract_domain(self, scenario: str, turns: List[Dict[str, str]]) -> str:
95
  """
96
- Combine scenario text + all turn texts to detect the domain more robustly.
97
  """
98
- # 1) Combine scenario + conversation text
99
  combined_text = scenario.lower()
100
  for turn in turns:
101
- text = turn.get('text', '').strip().lower()
102
- combined_text += " " + text
103
 
104
- # 2) Expanded domain patterns (edit or expand as you wish)
105
  domain_patterns = {
106
- 'restaurant': r'\b(restaurant|dining|food|reservation|table|menu|cuisine|eat)\b',
107
- 'movie': r'\b(movie|cinema|film|ticket|showtime|theater)\b',
108
- 'ride_share': r'\b(ride|taxi|uber|lyft|car\s?service|pickup|dropoff)\b',
109
  'coffee': r'\b(coffee|café|cafe|starbucks|espresso|latte|mocha|americano)\b',
110
- 'pizza': r'\b(pizza|delivery|order\s?food|pepperoni|topping|pizzeria)\b',
111
  'auto': r'\b(car|vehicle|repair|maintenance|mechanic|oil\s?change)\b'
112
  }
113
 
114
- # 3) Return first matched domain or 'other'
115
  for dom, pattern in domain_patterns.items():
116
  if re.search(pattern, combined_text):
117
- print(f"Matched domain: {dom}")
 
 
118
  return dom
119
 
120
- print("No domain match, returning 'other'")
 
121
  return 'other'
122
 
123
  def _process_utterances(self, utterances: List[Dict[str, Any]]) -> List[Dict[str, str]]:
124
- """Map speaker to user/assistant, store text."""
125
- turns = []
 
 
 
126
  for utt in utterances:
127
  speaker = 'assistant' if utt.get('speaker') == 'ASSISTANT' else 'user'
128
- text = utt.get('text', '').strip()
129
- turns.append({
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
  'speaker': speaker,
131
  'text': text
132
  })
133
- return turns
134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135
  def filter_and_convert(self, dialogues: List[TaskmasterDialogue]) -> List[Dict]:
136
  """
137
  Filter out dialogues that don't meet min turns / min user words,
138
- then convert them to final pipeline dict:
139
 
140
- {
141
- "dialogue_id": "...",
142
- "domain": "...",
143
- "turns": [
144
- {"speaker": "user", "text": "..."},
145
- ...
146
- ]
147
- }
148
  """
149
  results = []
150
  for dlg in dialogues:
151
  if not dlg.validate():
152
  continue
153
 
 
154
  if len(dlg.turns) < self.config.min_turns:
155
  continue
156
 
157
  # Check user-turn min words
 
158
  keep = True
159
  for turn in dlg.turns:
160
  if turn['speaker'] == 'user':
161
- word_count = len(turn['text'].split())
162
- if word_count < self.config.min_user_words:
163
  keep = False
164
  break
 
165
  if not keep:
166
  continue
167
 
168
  pipeline_dlg = {
169
  'dialogue_id': dlg.conversation_id,
170
  'domain': dlg.domain,
171
- 'turns': dlg.turns # or you can refine further if needed
172
  }
173
  results.append(pipeline_dlg)
174
 
175
  if self.config.debug:
176
- print(f"[TaskmasterProcessor] Filtered down to {len(results)} dialogues.")
177
  return results
 
1
+ import os
2
  import re
3
+ import json
4
  from pathlib import Path
5
+ from typing import List, Dict, Optional, Any
6
  from dataclasses import dataclass, field
7
 
 
 
8
  @dataclass
9
  class TaskmasterDialogue:
 
10
  conversation_id: str
11
  instruction_id: Optional[str]
12
  scenario: Optional[str]
13
+ domain: Optional[str]
14
+ turns: List[Dict[str, Any]]
15
+ original_metadata: Dict[str, Any] = field(default_factory=dict)
16
+
17
+ def __str__(self):
18
+ return f"TaskmasterDialogue(conversation_id={self.conversation_id}, turns={len(self.turns)} turns)"
19
 
20
  def validate(self) -> bool:
 
21
  return bool(self.conversation_id and isinstance(self.turns, list))
22
 
23
+ class PipelineConfig:
24
+ """
25
+ Example config structure. Adjust to your real config usage.
26
+ """
27
+ def __init__(
28
+ self,
29
+ debug: bool = True,
30
+ min_turns: int = 2,
31
+ min_user_words: int = 3
32
+ ):
33
+ self.debug = debug
34
+ self.min_turns = min_turns
35
+ self.min_user_words = min_user_words
36
+
37
  class TaskmasterProcessor:
38
  """
39
+ Loads Taskmaster-1 dialogues, extracts domain from scenario,
40
+ cleans + filters them, and outputs a pipeline-friendly format.
41
  """
42
  def __init__(self, config: PipelineConfig):
43
  self.config = config
44
 
45
+ def load_taskmaster_dataset(
46
+ self,
47
+ base_dir: str,
48
+ max_examples: Optional[int] = None
49
+ ) -> List[TaskmasterDialogue]:
50
  """
51
  Load and parse Taskmaster JSON for self-dialogs & woz-dialogs (Taskmaster-1).
52
  Combines scenario text + conversation utterances to detect domain more robustly.
 
54
  required_files = {
55
  "self-dialogs": "self-dialogs.json",
56
  "woz-dialogs": "woz-dialogs.json",
57
+ "ontology": "ontology.json", # we might not actively use it, but let's expect it
58
  }
59
+ # 1) Check for missing
60
  missing = [k for k, v in required_files.items() if not Path(base_dir, v).exists()]
61
  if missing:
62
  raise FileNotFoundError(f"Missing Taskmaster files: {missing}")
63
 
64
+ # 2) Optionally load ontology
65
  ontology_path = Path(base_dir, required_files["ontology"])
66
  with open(ontology_path, 'r', encoding='utf-8') as f:
67
  ontology = json.load(f)
 
70
 
71
  dialogues: List[TaskmasterDialogue] = []
72
 
 
73
  file_keys = ["self-dialogs", "woz-dialogs"]
74
  for file_key in file_keys:
75
  file_path = Path(base_dir, required_files[file_key])
 
79
  for d in raw_data:
80
  conversation_id = d.get("conversation_id", "")
81
  instruction_id = d.get("instruction_id", None)
82
+ scenario_text = d.get("scenario", "")
83
+
84
+ # 3) Convert raw utterances
85
  utterances = d.get("utterances", [])
86
  turns = self._process_utterances(utterances)
87
 
88
+ # 4) Domain detection
89
+ domain = self._extract_domain(scenario_text, turns)
 
 
 
 
90
 
91
+ # 5) Build the structured object
92
  new_dlg = TaskmasterDialogue(
93
  conversation_id=conversation_id,
94
  instruction_id=instruction_id,
95
  scenario=scenario_text,
96
  domain=domain,
97
+ turns=turns,
98
+ original_metadata={}
99
  )
100
  dialogues.append(new_dlg)
101
 
 
108
 
109
  def _extract_domain(self, scenario: str, turns: List[Dict[str, str]]) -> str:
110
  """
111
+ Combine scenario text + all turn texts to detect domain more robustly.
112
  """
 
113
  combined_text = scenario.lower()
114
  for turn in turns:
115
+ txt = turn.get('text', '').lower()
116
+ combined_text += " " + txt
117
 
118
+ # Expanded domain patterns
119
  domain_patterns = {
120
+ 'restaurant': r'\b(restaurant|dining|food|reservation|table|menu|cuisine|eat|hungry)\b',
121
+ 'movie': r'\b(movie|cinema|film|ticket|showtime|theater|flick|screening)\b',
122
+ 'ride_share': r'\b(ride|taxi|uber|lyft|car\s?service|pickup|dropoff|driver)\b',
123
  'coffee': r'\b(coffee|café|cafe|starbucks|espresso|latte|mocha|americano)\b',
124
+ 'pizza': r'\b(pizza|delivery|order\s?food|pepperoni|topping|pizzeria|slice)\b',
125
  'auto': r'\b(car|vehicle|repair|maintenance|mechanic|oil\s?change)\b'
126
  }
127
 
 
128
  for dom, pattern in domain_patterns.items():
129
  if re.search(pattern, combined_text):
130
+ # Optional: print if debug
131
+ if self.config.debug:
132
+ print(f"Matched domain: {dom} in scenario/turns")
133
  return dom
134
 
135
+ if self.config.debug:
136
+ print("No domain match, returning 'other'")
137
  return 'other'
138
 
139
  def _process_utterances(self, utterances: List[Dict[str, Any]]) -> List[Dict[str, str]]:
140
+ """
141
+ Convert raw utterances to a cleaned list of (speaker, text).
142
+ Skip or remove lines that are numeric, too short, or empty.
143
+ """
144
+ cleaned_turns = []
145
  for utt in utterances:
146
  speaker = 'assistant' if utt.get('speaker') == 'ASSISTANT' else 'user'
147
+ raw_text = utt.get('text', '').strip()
148
+
149
+ # 1) Optional text cleaning
150
+ text = self._clean_text(raw_text)
151
+
152
+ # 2) Skip blank or numeric lines
153
+ if not text:
154
+ continue
155
+ if self._is_numeric_line(text):
156
+ continue
157
+
158
+ # 3) If it's extremely short, skip.
159
+ # (For example, "ok" or "yes" might be 1-2 words.)
160
+ if len(text.split()) < 2:
161
+ # Optionally keep "ok" or "yes" if you'd like, but let's skip them to keep quality up
162
+ continue
163
+
164
+ # 4) Append
165
+ cleaned_turns.append({
166
  'speaker': speaker,
167
  'text': text
168
  })
169
+ return cleaned_turns
170
 
171
+ def _clean_text(self, text: str) -> str:
172
+ """
173
+ Basic text normalization: remove repeated punctuation, handle weird spacing, etc.
174
+ Adjust to your needs.
175
+ """
176
+ # Example: collapse multiple spaces
177
+ text = re.sub(r'\s+', ' ', text)
178
+ # Example: remove trailing punctuation or repeated punctuation
179
+ # e.g. "Sure!!!" => "Sure!"
180
+ text = re.sub(r'([!?.,])\1+', r'\1', text)
181
+ return text.strip()
182
+
183
+ def _is_numeric_line(self, text: str) -> bool:
184
+ """
185
+ Return True if line is purely digits/punctuation/spaces,
186
+ e.g. "4 3 13", "12345", "3.14". Adjust as needed.
187
+ """
188
+ pattern = r'^[\s]*[\d]+([\s\d.,]+)*[\s]*$'
189
+ return bool(re.match(pattern, text))
190
+
191
  def filter_and_convert(self, dialogues: List[TaskmasterDialogue]) -> List[Dict]:
192
  """
193
  Filter out dialogues that don't meet min turns / min user words,
194
+ then convert them to final pipeline format:
195
 
196
+ {
197
+ "dialogue_id": "...",
198
+ "domain": "...",
199
+ "turns": [ {"speaker": "user", "text": "..."}, ... ]
200
+ }
 
 
 
201
  """
202
  results = []
203
  for dlg in dialogues:
204
  if not dlg.validate():
205
  continue
206
 
207
+ # If after cleaning, we have too few turns, skip
208
  if len(dlg.turns) < self.config.min_turns:
209
  continue
210
 
211
  # Check user-turn min words
212
+ # E.g. user must have >= 3 words
213
  keep = True
214
  for turn in dlg.turns:
215
  if turn['speaker'] == 'user':
216
+ words_count = len(turn['text'].split())
217
+ if words_count < self.config.min_user_words:
218
  keep = False
219
  break
220
+
221
  if not keep:
222
  continue
223
 
224
  pipeline_dlg = {
225
  'dialogue_id': dlg.conversation_id,
226
  'domain': dlg.domain,
227
+ 'turns': dlg.turns # already cleaned
228
  }
229
  results.append(pipeline_dlg)
230
 
231
  if self.config.debug:
232
+ print(f"[TaskmasterProcessor] Filtered down to {len(results)} dialogues after cleaning.")
233
  return results
validate_model.py CHANGED
@@ -103,10 +103,6 @@ def validate_chatbot():
103
  chatbot.data_pipeline.response_pool = json.load(f)
104
  logger.info(f"Response pool loaded from {RESPONSE_POOL_PATH}.")
105
 
106
- print("Sample from response pool (first 10):")
107
- for i, response in enumerate(chatbot.data_pipeline.response_pool[:10]):
108
- print(f"{i}: {response}")
109
-
110
  print("\nTotal responses in pool:", len(chatbot.data_pipeline.response_pool))
111
 
112
  # Validate dimension consistency
 
103
  chatbot.data_pipeline.response_pool = json.load(f)
104
  logger.info(f"Response pool loaded from {RESPONSE_POOL_PATH}.")
105
 
 
 
 
 
106
  print("\nTotal responses in pool:", len(chatbot.data_pipeline.response_pool))
107
 
108
  # Validate dimension consistency