Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,8 +10,7 @@ translator_de = pipeline("translation", model="Helsinki-NLP/opus-mt-en-de")
|
|
10 |
translator_es = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es")
|
11 |
translator_ta = pipeline("translation", model="facebook/nllb-200-distilled-600M", src_lang="eng_Latn", tgt_lang="tam_Taml")
|
12 |
speech_to_text = pipeline("automatic-speech-recognition", model="openai/whisper-small")
|
13 |
-
question_generator = pipeline("e2e-qg")
|
14 |
-
|
15 |
# Functional logic
|
16 |
def summarize(text):
|
17 |
return summarizer(text, max_length=60, min_length=20, do_sample=False)[0]['summary_text']
|
@@ -44,8 +43,10 @@ def transcribe(audio):
|
|
44 |
return speech_to_text(audio)["text"]
|
45 |
|
46 |
def generate_questions(text):
|
47 |
-
|
48 |
-
|
|
|
|
|
49 |
|
50 |
# UI App
|
51 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
|
10 |
translator_es = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es")
|
11 |
translator_ta = pipeline("translation", model="facebook/nllb-200-distilled-600M", src_lang="eng_Latn", tgt_lang="tam_Taml")
|
12 |
speech_to_text = pipeline("automatic-speech-recognition", model="openai/whisper-small")
|
13 |
+
question_generator = pipeline("text2text-generation", model="valhalla/t5-base-e2e-qg")
|
|
|
14 |
# Functional logic
|
15 |
def summarize(text):
|
16 |
return summarizer(text, max_length=60, min_length=20, do_sample=False)[0]['summary_text']
|
|
|
43 |
return speech_to_text(audio)["text"]
|
44 |
|
45 |
def generate_questions(text):
|
46 |
+
prompt = "generate questions: " + text
|
47 |
+
result = question_generator(prompt, max_length=256, do_sample=False)
|
48 |
+
return result[0]["generated_text"]
|
49 |
+
|
50 |
|
51 |
# UI App
|
52 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|