Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import sys | |
| import io, os, stat | |
| import torch | |
| import subprocess | |
| import random | |
| from zipfile import ZipFile | |
| import uuid | |
| import time | |
| import torchaudio | |
| import numpy as np | |
| # update gradio to faster streaming | |
| # download for mecab | |
| print("install unidic") | |
| os.system('python -m unidic download') | |
| # By using XTTS you agree to CPML license https://coqui.ai/cpml | |
| os.environ["COQUI_TOS_AGREED"] = "1" | |
| # langid is used to detect language for longer text | |
| # Most users expect text to be their own language, there is checkbox to disable it | |
| import langid | |
| import base64 | |
| import csv | |
| from io import StringIO | |
| import datetime | |
| import re | |
| from scipy.io.wavfile import write | |
| from pydub import AudioSegment | |
| from TTS.api import TTS | |
| from TTS.tts.configs.xtts_config import XttsConfig | |
| from TTS.tts.models.xtts import Xtts | |
| from TTS.utils.generic_utils import get_user_data_dir | |
| from huggingface_hub import HfApi | |
| # Use never ffmpeg binary for Ubuntu20 to use denoising for microphone input | |
| print("Export newer ffmpeg binary for denoise filter") | |
| ZipFile("ffmpeg.zip").extractall() | |
| print("Make ffmpeg binary executable") | |
| st = os.stat("ffmpeg") | |
| os.chmod("ffmpeg", st.st_mode | stat.S_IEXEC) | |
| HF_TOKEN = os.environ.get("HF_TOKEN") | |
| if not HF_TOKEN: | |
| raise ValueError("HF_TOKEN environment variable is not set") | |
| # will use api to restart space on a unrecoverable error | |
| api = HfApi(token=HF_TOKEN) | |
| repo_id = "coqui/xtts" | |
| # This will trigger downloading model | |
| print("Downloading if not downloaded Coqui XTTS V2") | |
| from TTS.utils.manage import ModelManager | |
| model_name = "tts_models/multilingual/multi-dataset/xtts_v2" | |
| ModelManager().download_model(model_name) | |
| model_path = os.path.join(get_user_data_dir("tts"), model_name.replace("/", "--")) | |
| print("XTTS downloaded") | |
| # Ensure the model path and its contents are accessible | |
| os.system(f'chown -R appuser:appgroup {model_path}') | |
| os.system(f'chmod -R 755 {model_path}') | |
| # Ensure the model directory and files have the correct permissions | |
| if not os.access(model_path, os.W_OK): | |
| raise PermissionError(f"Write permission denied for model directory: {model_path}") | |
| config = XttsConfig() | |
| config.load_json(os.path.join(model_path, "config.json")) | |
| model = Xtts.init_from_config(config) | |
| checkpoint_path = os.path.join(model_path, "model.pth") | |
| vocab_path = os.path.join(model_path, "vocab.json") | |
| if not os.path.exists(checkpoint_path): | |
| raise FileNotFoundError(f"Checkpoint file not found at {checkpoint_path}") | |
| if not os.path.exists(vocab_path): | |
| raise FileNotFoundError(f"Vocab file not found at {vocab_path}") | |
| if not os.environ.get('CUDA_HOME'): | |
| print(f"ENV var CUDA_HOME is not set, defaulting to: '/usr/local/cuda'") | |
| os.environ['CUDA_HOME'] = f"/usr/local/cuda" | |
| model.load_checkpoint( | |
| config, | |
| checkpoint_dir=model_path, | |
| vocab_path=vocab_path, | |
| eval=True, | |
| use_deepspeed=True, | |
| ) | |
| model.cuda() | |
| # This is for debugging purposes only | |
| DEVICE_ASSERT_DETECTED = 0 | |
| DEVICE_ASSERT_PROMPT = None | |
| DEVICE_ASSERT_LANG = None | |
| supported_languages = config.languages | |
| def numpy_to_mp3(audio_array, sampling_rate): | |
| # Normalize audio_array if it's floating-point | |
| if np.issubdtype(audio_array.dtype, np.floating): | |
| max_val = np.max(np.abs(audio_array)) | |
| audio_array = (audio_array / max_val) * 32767 # Normalize to 16-bit range | |
| audio_array = audio_array.astype(np.int16) | |
| # Create an audio segment from the numpy array | |
| audio_segment = AudioSegment( | |
| audio_array.tobytes(), | |
| frame_rate=sampling_rate, | |
| sample_width=audio_array.dtype.itemsize, | |
| channels=1 | |
| ) | |
| # Export the audio segment to MP3 bytes - use a high bitrate to maximise quality | |
| mp3_io = io.BytesIO() | |
| audio_segment.export(mp3_io, format="mp3", bitrate="320k") | |
| # Get the MP3 bytes | |
| mp3_bytes = mp3_io.getvalue() | |
| mp3_io.close() | |
| return mp3_bytes | |
| def predict( | |
| prompt, | |
| language, | |
| audio_file_pth, | |
| mic_file_path, | |
| use_mic, | |
| voice_cleanup, | |
| no_lang_auto_detect, | |
| agree, | |
| ): | |
| if agree == True: | |
| if language not in supported_languages: | |
| print( | |
| f"Language you put {language} in is not in is not in our Supported Languages, please choose from dropdown" | |
| ) | |
| return ( | |
| None, | |
| ) | |
| language_predicted = langid.classify(prompt)[ | |
| 0 | |
| ].strip() # strip need as there is space at end! | |
| # tts expects chinese as zh-cn | |
| if language_predicted == "zh": | |
| # we use zh-cn | |
| language_predicted = "zh-cn" | |
| print(f"Detected language:{language_predicted}, Chosen language:{language}") | |
| # After text character length 15 trigger language detection | |
| if len(prompt) > 15: | |
| # allow any language for short text as some may be common | |
| # If user unchecks language autodetection it will not trigger | |
| # You may remove this completely for own use | |
| if language_predicted != language and not no_lang_auto_detect: | |
| # Please duplicate and remove this check if you really want this | |
| # Or auto-detector fails to identify language (which it can on pretty short text or mixed text) | |
| print( | |
| f"It looks like your text isn’t the language you chose , if you’re sure the text is the same language you chose, please check disable language auto-detection checkbox" | |
| ) | |
| return ( | |
| None, | |
| ) | |
| if use_mic == True: | |
| if mic_file_path is not None: | |
| speaker_wav = mic_file_path | |
| else: | |
| print( | |
| "Please record your voice with Microphone, or uncheck Use Microphone to use reference audios" | |
| ) | |
| return ( | |
| None, | |
| ) | |
| else: | |
| speaker_wav = audio_file_pth | |
| # Filtering for microphone input, as it has BG noise, maybe silence in beginning and end | |
| # This is fast filtering not perfect | |
| # Apply all on demand | |
| lowpassfilter = denoise = trim = loudness = True | |
| if lowpassfilter: | |
| lowpass_highpass = "lowpass=8000,highpass=75," | |
| else: | |
| lowpass_highpass = "" | |
| if trim: | |
| # better to remove silence in beginning and end for microphone | |
| trim_silence = "areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02,areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02," | |
| else: | |
| trim_silence = "" | |
| if voice_cleanup: | |
| try: | |
| out_filename = ( | |
| speaker_wav + str(uuid.uuid4()) + ".wav" | |
| ) # ffmpeg to know output format | |
| # we will use newer ffmpeg as that has afftn denoise filter | |
| shell_command = f"./ffmpeg -y -i {speaker_wav} -af {lowpass_highpass}{trim_silence} {out_filename}".split( | |
| " " | |
| ) | |
| command_result = subprocess.run( | |
| [item for item in shell_command], | |
| capture_output=False, | |
| text=True, | |
| check=True, | |
| ) | |
| speaker_wav = out_filename | |
| print("Filtered microphone input") | |
| except subprocess.CalledProcessError: | |
| # There was an error - command exited with non-zero code | |
| print("Error: failed filtering, use original microphone input") | |
| else: | |
| speaker_wav = speaker_wav | |
| if len(prompt) < 2: | |
| print("Please give a longer prompt text") | |
| return ( | |
| None, | |
| ) | |
| if len(prompt) > 1000: | |
| print( | |
| "Text length limited to 200 characters for this demo, please try shorter text. You can clone this space and edit code for your own usage" | |
| ) | |
| return ( | |
| None, | |
| ) | |
| global DEVICE_ASSERT_DETECTED | |
| if DEVICE_ASSERT_DETECTED: | |
| global DEVICE_ASSERT_PROMPT | |
| global DEVICE_ASSERT_LANG | |
| # It will likely never come here as we restart space on first unrecoverable error now | |
| print( | |
| f"Unrecoverable exception caused by language:{DEVICE_ASSERT_LANG} prompt:{DEVICE_ASSERT_PROMPT}" | |
| ) | |
| # HF Space specific.. This error is unrecoverable need to restart space | |
| space = api.get_space_runtime(repo_id=repo_id) | |
| if space.stage != "BUILDING": | |
| api.restart_space(repo_id=repo_id) | |
| else: | |
| print("TRIED TO RESTART but space is building") | |
| try: | |
| metrics_text = "" | |
| t_latent = time.time() | |
| # note diffusion_conditioning not used on hifigan (default mode), it will be empty but need to pass it to model.inference | |
| try: | |
| ( | |
| gpt_cond_latent, | |
| speaker_embedding, | |
| ) = model.get_conditioning_latents(audio_path=speaker_wav, gpt_cond_len=30, gpt_cond_chunk_len=4, max_ref_length=60) | |
| except Exception as e: | |
| print("Speaker encoding error", str(e)) | |
| print( | |
| "It appears something wrong with reference, did you unmute your microphone?" | |
| ) | |
| return ( | |
| None, | |
| ) | |
| latent_calculation_time = time.time() - t_latent | |
| # metrics_text=f"Embedding calculation time: {latent_calculation_time:.2f} seconds\n" | |
| # temporary comma fix | |
| prompt = re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)", r"\1 \2\2", prompt) | |
| wav_chunks = [] | |
| ## Direct mode | |
| """ | |
| print("I: Generating new audio...") | |
| t0 = time.time() | |
| out = model.inference( | |
| prompt, | |
| language, | |
| gpt_cond_latent, | |
| speaker_embedding, | |
| repetition_penalty=5.0, | |
| temperature=0.75, | |
| ) | |
| inference_time = time.time() - t0 | |
| print(f"I: Time to generate audio: {round(inference_time*1000)} milliseconds") | |
| metrics_text+=f"Time to generate audio: {round(inference_time*1000)} milliseconds\n" | |
| real_time_factor= (time.time() - t0) / out['wav'].shape[-1] * 24000 | |
| print(f"Real-time factor (RTF): {real_time_factor}") | |
| metrics_text+=f"Real-time factor (RTF): {real_time_factor:.2f}\n" | |
| torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000) | |
| """ | |
| print("I: Generating new audio in streaming mode...") | |
| t0 = time.time() | |
| chunks = model.inference_stream( | |
| prompt, | |
| language, | |
| gpt_cond_latent, | |
| speaker_embedding, | |
| repetition_penalty=7.0, | |
| temperature=0.85, | |
| ) | |
| first_chunk = True | |
| for i, chunk in enumerate(chunks): | |
| if first_chunk: | |
| first_chunk_time = time.time() - t0 | |
| metrics_text += f"Latency to first audio chunk: {round(first_chunk_time*1000)} milliseconds\n" | |
| first_chunk = False | |
| # Convert chunk to numpy array and return it | |
| chunk_np = chunk.cpu().numpy() | |
| print('chunk',i) | |
| yield (24000, chunk_np) | |
| wav_chunks.append(chunk) | |
| print(f"Received chunk {i} of audio length {chunk.shape[-1]}") | |
| inference_time = time.time() - t0 | |
| print( | |
| f"I: Time to generate audio: {round(inference_time*1000)} milliseconds" | |
| ) | |
| # metrics_text += ( | |
| # f"Time to generate audio: {round(inference_time*1000)} milliseconds\n" | |
| #) | |
| except RuntimeError as e: | |
| if "device-side assert" in str(e): | |
| # cannot do anything on cuda device side error, need tor estart | |
| print( | |
| f"Exit due to: Unrecoverable exception caused by language:{language} prompt:{prompt}", | |
| flush=True, | |
| ) | |
| print("Unhandled Exception encounter, please retry in a minute") | |
| print("Cuda device-assert Runtime encountered need restart") | |
| if not DEVICE_ASSERT_DETECTED: | |
| DEVICE_ASSERT_DETECTED = 1 | |
| DEVICE_ASSERT_PROMPT = prompt | |
| DEVICE_ASSERT_LANG = language | |
| # just before restarting save what caused the issue so we can handle it in future | |
| # Uploading Error data only happens for unrecovarable error | |
| error_time = datetime.datetime.now().strftime("%d-%m-%Y-%H:%M:%S") | |
| error_data = [ | |
| error_time, | |
| prompt, | |
| language, | |
| audio_file_pth, | |
| mic_file_path, | |
| use_mic, | |
| voice_cleanup, | |
| no_lang_auto_detect, | |
| agree, | |
| ] | |
| error_data = [str(e) if type(e) != str else e for e in error_data] | |
| print(error_data) | |
| print(speaker_wav) | |
| write_io = StringIO() | |
| csv.writer(write_io).writerows([error_data]) | |
| csv_upload = write_io.getvalue().encode() | |
| filename = error_time + "_" + str(uuid.uuid4()) + ".csv" | |
| print("Writing error csv") | |
| error_api = HfApi() | |
| error_api.upload_file( | |
| path_or_fileobj=csv_upload, | |
| path_in_repo=filename, | |
| repo_id="coqui/xtts-flagged-dataset", | |
| repo_type="dataset", | |
| ) | |
| # speaker_wav | |
| print("Writing error reference audio") | |
| speaker_filename = ( | |
| error_time + "_reference_" + str(uuid.uuid4()) + ".wav" | |
| ) | |
| error_api = HfApi() | |
| error_api.upload_file( | |
| path_or_fileobj=speaker_wav, | |
| path_in_repo=speaker_filename, | |
| repo_id="coqui/xtts-flagged-dataset", | |
| repo_type="dataset", | |
| ) | |
| # HF Space specific.. This error is unrecoverable need to restart space | |
| space = api.get_space_runtime(repo_id=repo_id) | |
| if space.stage != "BUILDING": | |
| api.restart_space(repo_id=repo_id) | |
| else: | |
| print("TRIED TO RESTART but space is building") | |
| else: | |
| if "Failed to decode" in str(e): | |
| print("Speaker encoding error", str(e)) | |
| print( | |
| "It appears something wrong with reference, did you unmute your microphone?" | |
| ) | |
| else: | |
| print("RuntimeError: non device-side assert error:", str(e)) | |
| print("Something unexpected happened please retry again.") | |
| return ( | |
| None, | |
| ) | |
| else: | |
| print("Please accept the Terms & Condition!") | |
| return ( | |
| None, | |
| ) | |
