Spaces:
Runtime error
Runtime error
Create coqui.py
Browse files
coqui.py
ADDED
|
@@ -0,0 +1,389 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
import io, os, stat
|
| 3 |
+
import subprocess
|
| 4 |
+
import random
|
| 5 |
+
from zipfile import ZipFile
|
| 6 |
+
import uuid
|
| 7 |
+
import time
|
| 8 |
+
import torch
|
| 9 |
+
import torchaudio
|
| 10 |
+
import numpy as np
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
#update gradio to faster streaming
|
| 14 |
+
#download for mecab
|
| 15 |
+
os.system('python -m unidic download')
|
| 16 |
+
|
| 17 |
+
# By using XTTS you agree to CPML license https://coqui.ai/cpml
|
| 18 |
+
os.environ["COQUI_TOS_AGREED"] = "1"
|
| 19 |
+
|
| 20 |
+
# langid is used to detect language for longer text
|
| 21 |
+
# Most users expect text to be their own language, there is checkbox to disable it
|
| 22 |
+
import langid
|
| 23 |
+
import base64
|
| 24 |
+
import csv
|
| 25 |
+
from io import StringIO
|
| 26 |
+
import datetime
|
| 27 |
+
import re
|
| 28 |
+
|
| 29 |
+
from scipy.io.wavfile import write
|
| 30 |
+
from pydub import AudioSegment
|
| 31 |
+
|
| 32 |
+
from TTS.api import TTS
|
| 33 |
+
from TTS.tts.configs.xtts_config import XttsConfig
|
| 34 |
+
from TTS.tts.models.xtts import Xtts
|
| 35 |
+
from TTS.utils.generic_utils import get_user_data_dir
|
| 36 |
+
|
| 37 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 38 |
+
|
| 39 |
+
from huggingface_hub import HfApi
|
| 40 |
+
# will use api to restart space on a unrecoverable error
|
| 41 |
+
api = HfApi(token=HF_TOKEN)
|
| 42 |
+
repo_id = "coqui/xtts"
|
| 43 |
+
|
| 44 |
+
# This will trigger downloading model
|
| 45 |
+
print("Downloading if not downloaded Coqui XTTS V2")
|
| 46 |
+
from TTS.utils.manage import ModelManager
|
| 47 |
+
|
| 48 |
+
model_name = "tts_models/multilingual/multi-dataset/xtts_v2"
|
| 49 |
+
ModelManager().download_model(model_name)
|
| 50 |
+
model_path = os.path.join(get_user_data_dir("tts"), model_name.replace("/", "--"))
|
| 51 |
+
print("XTTS downloaded")
|
| 52 |
+
|
| 53 |
+
config = XttsConfig()
|
| 54 |
+
config.load_json(os.path.join(model_path, "config.json"))
|
| 55 |
+
|
| 56 |
+
model = Xtts.init_from_config(config)
|
| 57 |
+
model.load_checkpoint(
|
| 58 |
+
config,
|
| 59 |
+
checkpoint_path=os.path.join(model_path, "model.pth"),
|
| 60 |
+
vocab_path=os.path.join(model_path, "vocab.json"),
|
| 61 |
+
eval=True,
|
| 62 |
+
use_deepspeed=True,
|
| 63 |
+
)
|
| 64 |
+
model.cuda()
|
| 65 |
+
|
| 66 |
+
# This is for debugging purposes only
|
| 67 |
+
DEVICE_ASSERT_DETECTED = 0
|
| 68 |
+
DEVICE_ASSERT_PROMPT = None
|
| 69 |
+
DEVICE_ASSERT_LANG = None
|
| 70 |
+
|
| 71 |
+
supported_languages = config.languages
|
| 72 |
+
def numpy_to_mp3(audio_array, sampling_rate):
|
| 73 |
+
# Normalize audio_array if it's floating-point
|
| 74 |
+
if np.issubdtype(audio_array.dtype, np.floating):
|
| 75 |
+
max_val = np.max(np.abs(audio_array))
|
| 76 |
+
audio_array = (audio_array / max_val) * 32767 # Normalize to 16-bit range
|
| 77 |
+
audio_array = audio_array.astype(np.int16)
|
| 78 |
+
|
| 79 |
+
# Create an audio segment from the numpy array
|
| 80 |
+
audio_segment = AudioSegment(
|
| 81 |
+
audio_array.tobytes(),
|
| 82 |
+
frame_rate=sampling_rate,
|
| 83 |
+
sample_width=audio_array.dtype.itemsize,
|
| 84 |
+
channels=1
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
# Export the audio segment to MP3 bytes - use a high bitrate to maximise quality
|
| 88 |
+
mp3_io = io.BytesIO()
|
| 89 |
+
audio_segment.export(mp3_io, format="mp3", bitrate="320k")
|
| 90 |
+
|
| 91 |
+
# Get the MP3 bytes
|
| 92 |
+
mp3_bytes = mp3_io.getvalue()
|
| 93 |
+
mp3_io.close()
|
| 94 |
+
|
| 95 |
+
return mp3_bytes
|
| 96 |
+
|
| 97 |
+
def predict(
|
| 98 |
+
prompt,
|
| 99 |
+
language,
|
| 100 |
+
audio_file_pth,
|
| 101 |
+
mic_file_path,
|
| 102 |
+
use_mic,
|
| 103 |
+
voice_cleanup,
|
| 104 |
+
no_lang_auto_detect,
|
| 105 |
+
agree,
|
| 106 |
+
):
|
| 107 |
+
if agree == True:
|
| 108 |
+
if language not in supported_languages:
|
| 109 |
+
gr.Warning(
|
| 110 |
+
f"Language you put {language} in is not in is not in our Supported Languages, please choose from dropdown"
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
return (
|
| 114 |
+
None,
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
language_predicted = langid.classify(prompt)[
|
| 118 |
+
0
|
| 119 |
+
].strip() # strip need as there is space at end!
|
| 120 |
+
|
| 121 |
+
# tts expects chinese as zh-cn
|
| 122 |
+
if language_predicted == "zh":
|
| 123 |
+
# we use zh-cn
|
| 124 |
+
language_predicted = "zh-cn"
|
| 125 |
+
|
| 126 |
+
print(f"Detected language:{language_predicted}, Chosen language:{language}")
|
| 127 |
+
|
| 128 |
+
# After text character length 15 trigger language detection
|
| 129 |
+
if len(prompt) > 15:
|
| 130 |
+
# allow any language for short text as some may be common
|
| 131 |
+
# If user unchecks language autodetection it will not trigger
|
| 132 |
+
# You may remove this completely for own use
|
| 133 |
+
if language_predicted != language and not no_lang_auto_detect:
|
| 134 |
+
# Please duplicate and remove this check if you really want this
|
| 135 |
+
# Or auto-detector fails to identify language (which it can on pretty short text or mixed text)
|
| 136 |
+
gr.Warning(
|
| 137 |
+
f"It looks like your text isn’t the language you chose , if you’re sure the text is the same language you chose, please check disable language auto-detection checkbox"
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
return (
|
| 141 |
+
None,
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
if use_mic == True:
|
| 145 |
+
if mic_file_path is not None:
|
| 146 |
+
speaker_wav = mic_file_path
|
| 147 |
+
else:
|
| 148 |
+
gr.Warning(
|
| 149 |
+
"Please record your voice with Microphone, or uncheck Use Microphone to use reference audios"
|
| 150 |
+
)
|
| 151 |
+
return (
|
| 152 |
+
None,
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
else:
|
| 156 |
+
speaker_wav = audio_file_pth
|
| 157 |
+
|
| 158 |
+
# Filtering for microphone input, as it has BG noise, maybe silence in beginning and end
|
| 159 |
+
# This is fast filtering not perfect
|
| 160 |
+
|
| 161 |
+
# Apply all on demand
|
| 162 |
+
lowpassfilter = denoise = trim = loudness = True
|
| 163 |
+
|
| 164 |
+
if lowpassfilter:
|
| 165 |
+
lowpass_highpass = "lowpass=8000,highpass=75,"
|
| 166 |
+
else:
|
| 167 |
+
lowpass_highpass = ""
|
| 168 |
+
|
| 169 |
+
if trim:
|
| 170 |
+
# better to remove silence in beginning and end for microphone
|
| 171 |
+
trim_silence = "areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02,areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02,"
|
| 172 |
+
else:
|
| 173 |
+
trim_silence = ""
|
| 174 |
+
|
| 175 |
+
if voice_cleanup:
|
| 176 |
+
try:
|
| 177 |
+
out_filename = (
|
| 178 |
+
speaker_wav + str(uuid.uuid4()) + ".wav"
|
| 179 |
+
) # ffmpeg to know output format
|
| 180 |
+
|
| 181 |
+
# we will use newer ffmpeg as that has afftn denoise filter
|
| 182 |
+
shell_command = f"./ffmpeg -y -i {speaker_wav} -af {lowpass_highpass}{trim_silence} {out_filename}".split(
|
| 183 |
+
" "
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
command_result = subprocess.run(
|
| 187 |
+
[item for item in shell_command],
|
| 188 |
+
capture_output=False,
|
| 189 |
+
text=True,
|
| 190 |
+
check=True,
|
| 191 |
+
)
|
| 192 |
+
speaker_wav = out_filename
|
| 193 |
+
print("Filtered microphone input")
|
| 194 |
+
except subprocess.CalledProcessError:
|
| 195 |
+
# There was an error - command exited with non-zero code
|
| 196 |
+
print("Error: failed filtering, use original microphone input")
|
| 197 |
+
else:
|
| 198 |
+
speaker_wav = speaker_wav
|
| 199 |
+
|
| 200 |
+
if len(prompt) < 2:
|
| 201 |
+
gr.Warning("Please give a longer prompt text")
|
| 202 |
+
return (
|
| 203 |
+
None,
|
| 204 |
+
)
|
| 205 |
+
if len(prompt) > 1000:
|
| 206 |
+
gr.Warning(
|
| 207 |
+
"Text length limited to 200 characters for this demo, please try shorter text. You can clone this space and edit code for your own usage"
|
| 208 |
+
)
|
| 209 |
+
return (
|
| 210 |
+
None,
|
| 211 |
+
)
|
| 212 |
+
global DEVICE_ASSERT_DETECTED
|
| 213 |
+
if DEVICE_ASSERT_DETECTED:
|
| 214 |
+
global DEVICE_ASSERT_PROMPT
|
| 215 |
+
global DEVICE_ASSERT_LANG
|
| 216 |
+
# It will likely never come here as we restart space on first unrecoverable error now
|
| 217 |
+
print(
|
| 218 |
+
f"Unrecoverable exception caused by language:{DEVICE_ASSERT_LANG} prompt:{DEVICE_ASSERT_PROMPT}"
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
# HF Space specific.. This error is unrecoverable need to restart space
|
| 222 |
+
space = api.get_space_runtime(repo_id=repo_id)
|
| 223 |
+
if space.stage != "BUILDING":
|
| 224 |
+
api.restart_space(repo_id=repo_id)
|
| 225 |
+
else:
|
| 226 |
+
print("TRIED TO RESTART but space is building")
|
| 227 |
+
|
| 228 |
+
try:
|
| 229 |
+
metrics_text = ""
|
| 230 |
+
t_latent = time.time()
|
| 231 |
+
|
| 232 |
+
# note diffusion_conditioning not used on hifigan (default mode), it will be empty but need to pass it to model.inference
|
| 233 |
+
try:
|
| 234 |
+
(
|
| 235 |
+
gpt_cond_latent,
|
| 236 |
+
speaker_embedding,
|
| 237 |
+
) = model.get_conditioning_latents(audio_path=speaker_wav, gpt_cond_len=30, gpt_cond_chunk_len=4, max_ref_length=60)
|
| 238 |
+
except Exception as e:
|
| 239 |
+
print("Speaker encoding error", str(e))
|
| 240 |
+
gr.Warning(
|
| 241 |
+
"It appears something wrong with reference, did you unmute your microphone?"
|
| 242 |
+
)
|
| 243 |
+
return (
|
| 244 |
+
None,
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
latent_calculation_time = time.time() - t_latent
|
| 248 |
+
# metrics_text=f"Embedding calculation time: {latent_calculation_time:.2f} seconds\n"
|
| 249 |
+
|
| 250 |
+
# temporary comma fix
|
| 251 |
+
prompt = re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)", r"\1 \2\2", prompt)
|
| 252 |
+
|
| 253 |
+
wav_chunks = []
|
| 254 |
+
## Direct mode
|
| 255 |
+
"""
|
| 256 |
+
print("I: Generating new audio...")
|
| 257 |
+
t0 = time.time()
|
| 258 |
+
out = model.inference(
|
| 259 |
+
prompt,
|
| 260 |
+
language,
|
| 261 |
+
gpt_cond_latent,
|
| 262 |
+
speaker_embedding,
|
| 263 |
+
repetition_penalty=5.0,
|
| 264 |
+
temperature=0.75,
|
| 265 |
+
)
|
| 266 |
+
inference_time = time.time() - t0
|
| 267 |
+
print(f"I: Time to generate audio: {round(inference_time*1000)} milliseconds")
|
| 268 |
+
metrics_text+=f"Time to generate audio: {round(inference_time*1000)} milliseconds\n"
|
| 269 |
+
real_time_factor= (time.time() - t0) / out['wav'].shape[-1] * 24000
|
| 270 |
+
print(f"Real-time factor (RTF): {real_time_factor}")
|
| 271 |
+
metrics_text+=f"Real-time factor (RTF): {real_time_factor:.2f}\n"
|
| 272 |
+
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
|
| 273 |
+
"""
|
| 274 |
+
print("I: Generating new audio in streaming mode...")
|
| 275 |
+
t0 = time.time()
|
| 276 |
+
chunks = model.inference_stream(
|
| 277 |
+
prompt,
|
| 278 |
+
language,
|
| 279 |
+
gpt_cond_latent,
|
| 280 |
+
speaker_embedding,
|
| 281 |
+
repetition_penalty=7.0,
|
| 282 |
+
temperature=0.85,
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
first_chunk = True
|
| 286 |
+
for i, chunk in enumerate(chunks):
|
| 287 |
+
if first_chunk:
|
| 288 |
+
first_chunk_time = time.time() - t0
|
| 289 |
+
metrics_text += f"Latency to first audio chunk: {round(first_chunk_time*1000)} milliseconds\n"
|
| 290 |
+
first_chunk = False
|
| 291 |
+
|
| 292 |
+
# Convert chunk to numpy array and return it
|
| 293 |
+
chunk_np = chunk.cpu().numpy()
|
| 294 |
+
print('chunk',i)
|
| 295 |
+
yield (24000, chunk_np)
|
| 296 |
+
wav_chunks.append(chunk)
|
| 297 |
+
|
| 298 |
+
print(f"Received chunk {i} of audio length {chunk.shape[-1]}")
|
| 299 |
+
inference_time = time.time() - t0
|
| 300 |
+
print(
|
| 301 |
+
f"I: Time to generate audio: {round(inference_time*1000)} milliseconds"
|
| 302 |
+
)
|
| 303 |
+
# metrics_text += (
|
| 304 |
+
# f"Time to generate audio: {round(inference_time*1000)} milliseconds\n"
|
| 305 |
+
#)
|
| 306 |
+
|
| 307 |
+
except RuntimeError as e:
|
| 308 |
+
if "device-side assert" in str(e):
|
| 309 |
+
# cannot do anything on cuda device side error, need tor estart
|
| 310 |
+
print(
|
| 311 |
+
f"Exit due to: Unrecoverable exception caused by language:{language} prompt:{prompt}",
|
| 312 |
+
flush=True,
|
| 313 |
+
)
|
| 314 |
+
gr.Warning("Unhandled Exception encounter, please retry in a minute")
|
| 315 |
+
print("Cuda device-assert Runtime encountered need restart")
|
| 316 |
+
if not DEVICE_ASSERT_DETECTED:
|
| 317 |
+
DEVICE_ASSERT_DETECTED = 1
|
| 318 |
+
DEVICE_ASSERT_PROMPT = prompt
|
| 319 |
+
DEVICE_ASSERT_LANG = language
|
| 320 |
+
|
| 321 |
+
# just before restarting save what caused the issue so we can handle it in future
|
| 322 |
+
# Uploading Error data only happens for unrecovarable error
|
| 323 |
+
error_time = datetime.datetime.now().strftime("%d-%m-%Y-%H:%M:%S")
|
| 324 |
+
error_data = [
|
| 325 |
+
error_time,
|
| 326 |
+
prompt,
|
| 327 |
+
language,
|
| 328 |
+
audio_file_pth,
|
| 329 |
+
mic_file_path,
|
| 330 |
+
use_mic,
|
| 331 |
+
voice_cleanup,
|
| 332 |
+
no_lang_auto_detect,
|
| 333 |
+
agree,
|
| 334 |
+
]
|
| 335 |
+
error_data = [str(e) if type(e) != str else e for e in error_data]
|
| 336 |
+
print(error_data)
|
| 337 |
+
print(speaker_wav)
|
| 338 |
+
write_io = StringIO()
|
| 339 |
+
csv.writer(write_io).writerows([error_data])
|
| 340 |
+
csv_upload = write_io.getvalue().encode()
|
| 341 |
+
|
| 342 |
+
filename = error_time + "_" + str(uuid.uuid4()) + ".csv"
|
| 343 |
+
print("Writing error csv")
|
| 344 |
+
error_api = HfApi()
|
| 345 |
+
error_api.upload_file(
|
| 346 |
+
path_or_fileobj=csv_upload,
|
| 347 |
+
path_in_repo=filename,
|
| 348 |
+
repo_id="coqui/xtts-flagged-dataset",
|
| 349 |
+
repo_type="dataset",
|
| 350 |
+
)
|
| 351 |
+
|
| 352 |
+
# speaker_wav
|
| 353 |
+
print("Writing error reference audio")
|
| 354 |
+
speaker_filename = (
|
| 355 |
+
error_time + "_reference_" + str(uuid.uuid4()) + ".wav"
|
| 356 |
+
)
|
| 357 |
+
error_api = HfApi()
|
| 358 |
+
error_api.upload_file(
|
| 359 |
+
path_or_fileobj=speaker_wav,
|
| 360 |
+
path_in_repo=speaker_filename,
|
| 361 |
+
repo_id="coqui/xtts-flagged-dataset",
|
| 362 |
+
repo_type="dataset",
|
| 363 |
+
)
|
| 364 |
+
|
| 365 |
+
# HF Space specific.. This error is unrecoverable need to restart space
|
| 366 |
+
space = api.get_space_runtime(repo_id=repo_id)
|
| 367 |
+
if space.stage != "BUILDING":
|
| 368 |
+
api.restart_space(repo_id=repo_id)
|
| 369 |
+
else:
|
| 370 |
+
print("TRIED TO RESTART but space is building")
|
| 371 |
+
|
| 372 |
+
else:
|
| 373 |
+
if "Failed to decode" in str(e):
|
| 374 |
+
print("Speaker encoding error", str(e))
|
| 375 |
+
gr.Warning(
|
| 376 |
+
"It appears something wrong with reference, did you unmute your microphone?"
|
| 377 |
+
)
|
| 378 |
+
else:
|
| 379 |
+
print("RuntimeError: non device-side assert error:", str(e))
|
| 380 |
+
gr.Warning("Something unexpected happened please retry again.")
|
| 381 |
+
return (
|
| 382 |
+
None,
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
else:
|
| 386 |
+
gr.Warning("Please accept the Terms & Condition!")
|
| 387 |
+
return (
|
| 388 |
+
None,
|
| 389 |
+
)
|