Spaces:
Runtime error
Runtime error
| from typing import Optional, Sequence | |
| import numpy as np | |
| from mmcv.transforms import to_tensor | |
| from mmcv.transforms.base import BaseTransform | |
| from mmdet.registry import TRANSFORMS | |
| from mmdet.structures import DetDataSample, TrackDataSample | |
| from mmdet.structures.bbox import BaseBoxes | |
| from mmengine.structures import InstanceData | |
| class PackMatchInputs(BaseTransform): | |
| """Pack the inputs data for the multi object tracking and video instance | |
| segmentation. All the information of images are packed to ``inputs``. All | |
| the information except images are packed to ``data_samples``. In order to | |
| get the original annotaiton and meta info, we add `instances` key into meta | |
| keys. | |
| Args: | |
| meta_keys (Sequence[str]): Meta keys to be collected in | |
| ``data_sample.metainfo``. Defaults to None. | |
| default_meta_keys (tuple): Default meta keys. Defaults to ('img_id', | |
| 'img_path', 'ori_shape', 'img_shape', 'scale_factor', | |
| 'flip', 'flip_direction', 'frame_id', 'is_video_data', | |
| 'video_id', 'video_length', 'instances'). | |
| """ | |
| mapping_table = { | |
| "gt_bboxes": "bboxes", | |
| "gt_bboxes_labels": "labels", | |
| "gt_masks": "masks", | |
| "gt_instances_ids": "instances_ids", | |
| } | |
| def __init__( | |
| self, | |
| meta_keys: Optional[dict] = None, | |
| default_meta_keys: tuple = ( | |
| "img_id", | |
| "img_path", | |
| "ori_shape", | |
| "img_shape", | |
| "scale_factor", | |
| "flip", | |
| "flip_direction", | |
| "frame_id", | |
| "video_id", | |
| "video_length", | |
| "ori_video_length", | |
| "instances", | |
| ), | |
| ): | |
| self.meta_keys = default_meta_keys | |
| if meta_keys is not None: | |
| if isinstance(meta_keys, str): | |
| meta_keys = (meta_keys,) | |
| else: | |
| assert isinstance(meta_keys, tuple), "meta_keys must be str or tuple" | |
| self.meta_keys += meta_keys | |
| def transform(self, results: dict) -> dict: | |
| """Method to pack the input data. | |
| Args: | |
| results (dict): Result dict from the data pipeline. | |
| Returns: | |
| dict: | |
| - 'inputs' (dict[Tensor]): The forward data of models. | |
| - 'data_samples' (obj:`TrackDataSample`): The annotation info of | |
| the samples. | |
| """ | |
| packed_results = dict() | |
| packed_results["inputs"] = dict() | |
| # 1. Pack images | |
| if "img" in results: | |
| imgs = results["img"] | |
| imgs = np.stack(imgs, axis=0) | |
| # imgs = imgs.transpose(0, 3, 1, 2) | |
| if not imgs.flags.c_contiguous: | |
| imgs = np.ascontiguousarray(imgs.transpose(0, 3, 1, 2)) | |
| imgs = to_tensor(imgs) | |
| else: | |
| imgs = to_tensor(imgs).permute(0, 3, 1, 2).contiguous() | |
| packed_results["inputs"] = imgs | |
| # 2. Pack InstanceData | |
| if "gt_ignore_flags" in results: | |
| gt_ignore_flags_list = results["gt_ignore_flags"] | |
| valid_idx_list, ignore_idx_list = [], [] | |
| for gt_ignore_flags in gt_ignore_flags_list: | |
| valid_idx = np.where(gt_ignore_flags == 0)[0] | |
| ignore_idx = np.where(gt_ignore_flags == 1)[0] | |
| valid_idx_list.append(valid_idx) | |
| ignore_idx_list.append(ignore_idx) | |
| assert "img_id" in results, "'img_id' must contained in the results " | |
| "for counting the number of images" | |
| num_imgs = len(results["img_id"]) | |
| instance_data_list = [InstanceData() for _ in range(num_imgs)] | |
| ignore_instance_data_list = [InstanceData() for _ in range(num_imgs)] | |
| for key in self.mapping_table.keys(): | |
| if key not in results: | |
| continue | |
| if key == "gt_masks": | |
| mapped_key = self.mapping_table[key] | |
| gt_masks_list = results[key] | |
| if "gt_ignore_flags" in results: | |
| for i, gt_mask in enumerate(gt_masks_list): | |
| valid_idx, ignore_idx = valid_idx_list[i], ignore_idx_list[i] | |
| instance_data_list[i][mapped_key] = gt_mask[valid_idx] | |
| ignore_instance_data_list[i][mapped_key] = gt_mask[ignore_idx] | |
| else: | |
| for i, gt_mask in enumerate(gt_masks_list): | |
| instance_data_list[i][mapped_key] = gt_mask | |
| elif isinstance(results[key][0], BaseBoxes): | |
| mapped_key = self.mapping_table[key] | |
| gt_bboxes_list = results[key] | |
| if "gt_ignore_flags" in results: | |
| for i, gt_bbox in enumerate(gt_bboxes_list): | |
| gt_bbox = gt_bbox.tensor | |
| valid_idx, ignore_idx = valid_idx_list[i], ignore_idx_list[i] | |
| instance_data_list[i][mapped_key] = gt_bbox[valid_idx] | |
| ignore_instance_data_list[i][mapped_key] = gt_bbox[ignore_idx] | |
| else: | |
| anns_list = results[key] | |
| if "gt_ignore_flags" in results: | |
| for i, ann in enumerate(anns_list): | |
| valid_idx, ignore_idx = valid_idx_list[i], ignore_idx_list[i] | |
| instance_data_list[i][self.mapping_table[key]] = to_tensor( | |
| ann[valid_idx] | |
| ) | |
| ignore_instance_data_list[i][ | |
| self.mapping_table[key] | |
| ] = to_tensor(ann[ignore_idx]) | |
| else: | |
| for i, ann in enumerate(anns_list): | |
| instance_data_list[i][self.mapping_table[key]] = to_tensor(ann) | |
| det_data_samples_list = [] | |
| for i in range(num_imgs): | |
| det_data_sample = DetDataSample() | |
| det_data_sample.gt_instances = instance_data_list[i] | |
| det_data_sample.ignored_instances = ignore_instance_data_list[i] | |
| det_data_samples_list.append(det_data_sample) | |
| # 3. Pack metainfo | |
| for key in self.meta_keys: | |
| if key not in results: | |
| continue | |
| img_metas_list = results[key] | |
| for i, img_meta in enumerate(img_metas_list): | |
| det_data_samples_list[i].set_metainfo({f"{key}": img_meta}) | |
| track_data_sample = TrackDataSample() | |
| track_data_sample.video_data_samples = det_data_samples_list | |
| if "key_frame_flags" in results: | |
| key_frame_flags = np.asarray(results["key_frame_flags"]) | |
| key_frames_inds = np.where(key_frame_flags)[0].tolist() | |
| ref_frames_inds = np.where(~key_frame_flags)[0].tolist() | |
| track_data_sample.set_metainfo(dict(key_frames_inds=key_frames_inds)) | |
| track_data_sample.set_metainfo(dict(ref_frames_inds=ref_frames_inds)) | |
| packed_results["data_samples"] = track_data_sample | |
| return packed_results | |
| def __repr__(self) -> str: | |
| repr_str = self.__class__.__name__ | |
| repr_str += f"meta_keys={self.meta_keys}, " | |
| repr_str += f"default_meta_keys={self.default_meta_keys})" | |
| return repr_str | |