Spaces:
Running
Running
File size: 5,387 Bytes
fe5070c be0cea3 fe5070c be0cea3 fe5070c 567ff97 fe5070c 9b179e0 00ff9a0 567ff97 9b179e0 567ff97 9b179e0 567ff97 fe5070c 3c14524 fe5070c 00ff9a0 fe5070c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
#!/usr/bin/env python3
# svg_compare_gradio.py
# ------------------------------------------------------------
import spaces
import re, os, torch, cairosvg, lpips, clip, gradio as gr
from io import BytesIO
from pathlib import Path
from PIL import Image
from transformers import BitsAndBytesConfig, AutoTokenizer
import gradio as gr
# ---------- paths YOU may want to edit ----------------------
ADAPTER_DIR = "unsloth_trained_weights/checkpoint-1700" # LoRA ckpt
BASE_MODEL = "Qwen/Qwen2.5-Coder-7B-Instruct"
MAX_NEW = 512
DEVICE = "cuda" # if torch.cuda.is_available() else "cpu"
# ---------- utils -------------------------------------------
SVG_PAT = re.compile(r"<svg[^>]*>.*?</svg>", re.S | re.I)
def extract_svg(txt:str):
m = list(SVG_PAT.finditer(txt))
return m[-1].group(0) if m else None # last match β
def svg2pil(svg:str):
try:
png = cairosvg.svg2png(bytestring=svg.encode())
return Image.open(BytesIO(png)).convert("RGB")
except Exception:
return None
# ---------- backbone loaders (CLIP + LPIPS) -----------------
_CLIP,_PREP,_LP=None,None,None
@spaces.GPU
def _load_backbones():
global _CLIP,_PREP,_LP
if _CLIP is None:
_CLIP,_PREP = clip.load("ViT-L/14", device=DEVICE); _CLIP.eval()
if _LP is None:
_LP = lpips.LPIPS(net="vgg").to(DEVICE).eval()
@spaces.GPU
@torch.no_grad()
def fused_sim(a:Image.Image,b:Image.Image,Ξ±=.5):
_load_backbones()
ta,tb = _PREP(a).unsqueeze(0).to(DEVICE), _PREP(b).unsqueeze(0).to(DEVICE)
fa = _CLIP.encode_image(ta); fa/=fa.norm(dim=-1,keepdim=True)
fb = _CLIP.encode_image(tb); fb/=fb.norm(dim=-1,keepdim=True)
clip_sim=(([email protected]).item()+1)/2
lp_sim = 1 - _LP(ta,tb,normalize=True).item()
return Ξ±*clip_sim + (1-Ξ±)*lp_sim
bnb_cfg = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_use_double_quant=True)
# ---------- load models once at startup ---------------------
@spaces.GPU
def load_models():
from unsloth import FastLanguageModel
global base, tok, lora
if base is None:
print("Loading BASE β¦")
base, tok = FastLanguageModel.from_pretrained(
BASE_MODEL, max_seq_length=2048,
load_in_4bit=True, quantization_config=bnb_cfg, device_map="auto")
tok.pad_token = tok.eos_token
print("Loading LoRA β¦")
lora, _ = FastLanguageModel.from_pretrained(
ADAPTER_DIR, max_seq_length=2048,
load_in_4bit=True, quantization_config=bnb_cfg, device_map="auto")
print("β models loaded")
@spaces.GPU
def ensure_models():
load_models()
return True # small, pickle-able sentinel
def build_prompt(desc:str):
msgs=[{"role":"system","content":"You are an SVG illustrator."},
{"role":"user",
"content":f"ONLY reply with a valid, complete <svg>β¦</svg> file that depicts: {desc}"}]
return tok.apply_chat_template(msgs, tokenize=False, add_generation_prompt=True)
@spaces.GPU
@torch.no_grad()
def draw(model, desc:str):
# ensure_models()
from unsloth import FastLanguageModel
global base, tok, lora
if base is None:
print("Loading BASE β¦")
base, tok = FastLanguageModel.from_pretrained(
BASE_MODEL, max_seq_length=2048,
load_in_4bit=True, quantization_config=bnb_cfg, device_map="auto")
tok.pad_token = tok.eos_token
print("Loading LoRA β¦")
lora, _ = FastLanguageModel.from_pretrained(
ADAPTER_DIR, max_seq_length=2048,
load_in_4bit=True, quantization_config=bnb_cfg, device_map="auto")
print("β models loaded")
prompt = build_prompt(desc)
ids = tok(prompt, return_tensors="pt").to(DEVICE)
out = model.generate(**ids, max_new_tokens=MAX_NEW,
do_sample=True, temperature=.7, top_p=.8)
txt = tok.decode(out[0], skip_special_tokens=True)
svg = extract_svg(txt)
img = svg2pil(svg) if svg else None
return img, svg or "(no SVG found)"
# ---------- gradio interface --------------------------------
def compare(desc):
img_base, svg_base = draw(base, desc)
img_lora, svg_lora = draw(lora, desc)
# sim = (fused_sim(img_lora, img_base) if img_base and img_lora else float("nan"))
caption = "Thanks for trying our model π\nIf you don't see an image for the base or GRPO model that means it didn't generate a valid SVG!"
return img_base, img_lora, caption, svg_base, svg_lora
with gr.Blocks(css="body{background:#111;color:#eee}") as demo:
gr.Markdown("## ποΈ Qwen-2.5 SVG Generator β base vs GRPO-LoRA")
gr.Markdown(
"Type an image **description** (e.g. *a purple forest at dusk*). "
"Click **Generate** to see what the base model and your fine-tuned LoRA produce."
)
inp = gr.Textbox(label="Description", placeholder="a purple forest at dusk")
btn = gr.Button("Generate")
with gr.Row():
out_base = gr.Image(label="Base model", type="pil")
out_lora = gr.Image(label="LoRA-tuned model", type="pil")
sim_lbl = gr.Markdown()
with gr.Accordion("βοΈ Raw SVG code", open=False):
svg_base_box = gr.Textbox(label="Base SVG", lines=6)
svg_lora_box = gr.Textbox(label="LoRA SVG", lines=6)
btn.click(compare, inp, [out_base, out_lora, sim_lbl, svg_base_box, svg_lora_box])
demo.launch()
|