File size: 37,017 Bytes
5301c48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Google Colab Version: [Open this notebook in Google Colab](https://colab.research.google.com/github/starfishdata/starfish/blob/main/examples/data_factory.ipynb)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Dependencies "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Looking in indexes: https://test.pypi.org/simple/, https://pypi.org/simple\n",
      "Requirement already satisfied: starfish-core in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (0.1.2)\n",
      "Requirement already satisfied: aiofiles<25.0.0,>=24.1.0 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from starfish-core) (24.1.0)\n",
      "Requirement already satisfied: aiosqlite<0.22.0,>=0.21.0 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from starfish-core) (0.21.0)\n",
      "Requirement already satisfied: cachetools<6.0.0,>=5.5.2 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from starfish-core) (5.5.2)\n",
      "Requirement already satisfied: cloudpickle<3.0.0,>=2.2.0 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from starfish-core) (2.2.1)\n",
      "Requirement already satisfied: cryptography>=44.0.1 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from starfish-core) (44.0.3)\n",
      "Requirement already satisfied: docstring_parser<0.17.0,>=0.16.0 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from starfish-core) (0.16)\n",
      "Requirement already satisfied: litellm<2.0.0,>=1.65.1 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from starfish-core) (1.69.3)\n",
      "Requirement already satisfied: loguru<0.8.0,>=0.7.3 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from starfish-core) (0.7.3)\n",
      "Requirement already satisfied: mcp<2.0.0,>=1.8.1 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from starfish-core) (1.9.0)\n",
      "Requirement already satisfied: nest_asyncio<2.0.0,>=1.6.0 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from starfish-core) (1.6.0)\n",
      "Requirement already satisfied: ollama<0.5.0,>=0.4.7 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from starfish-core) (0.4.8)\n",
      "Requirement already satisfied: posthog<4.0.0,>=3.11.0 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from starfish-core) (3.25.0)\n",
      "Requirement already satisfied: psutil<8.0.0,>=7.0.0 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from starfish-core) (7.0.0)\n",
      "Requirement already satisfied: python-dotenv<2.0.0,>=1.1.0 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from starfish-core) (1.1.0)\n",
      "Requirement already satisfied: typing-extensions<5.0.0,>=4.0.0 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from starfish-core) (4.13.2)\n",
      "Requirement already satisfied: cffi>=1.12 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from cryptography>=44.0.1->starfish-core) (1.17.1)\n",
      "Requirement already satisfied: aiohttp in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from litellm<2.0.0,>=1.65.1->starfish-core) (3.11.18)\n",
      "Requirement already satisfied: click in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from litellm<2.0.0,>=1.65.1->starfish-core) (8.2.0)\n",
      "Requirement already satisfied: httpx>=0.23.0 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from litellm<2.0.0,>=1.65.1->starfish-core) (0.28.1)\n",
      "Requirement already satisfied: importlib-metadata>=6.8.0 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from litellm<2.0.0,>=1.65.1->starfish-core) (8.7.0)\n",
      "Requirement already satisfied: jinja2<4.0.0,>=3.1.2 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from litellm<2.0.0,>=1.65.1->starfish-core) (3.1.6)\n",
      "Requirement already satisfied: jsonschema<5.0.0,>=4.22.0 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from litellm<2.0.0,>=1.65.1->starfish-core) (4.23.0)\n",
      "Requirement already satisfied: openai<1.76.0,>=1.68.2 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from litellm<2.0.0,>=1.65.1->starfish-core) (1.75.0)\n",
      "Requirement already satisfied: pydantic<3.0.0,>=2.0.0 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from litellm<2.0.0,>=1.65.1->starfish-core) (2.11.4)\n",
      "Requirement already satisfied: tiktoken>=0.7.0 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from litellm<2.0.0,>=1.65.1->starfish-core) (0.9.0)\n",
      "Requirement already satisfied: tokenizers in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from litellm<2.0.0,>=1.65.1->starfish-core) (0.21.1)\n",
      "Requirement already satisfied: anyio>=4.5 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from mcp<2.0.0,>=1.8.1->starfish-core) (4.9.0)\n",
      "Requirement already satisfied: httpx-sse>=0.4 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from mcp<2.0.0,>=1.8.1->starfish-core) (0.4.0)\n",
      "Requirement already satisfied: pydantic-settings>=2.5.2 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from mcp<2.0.0,>=1.8.1->starfish-core) (2.9.1)\n",
      "Requirement already satisfied: python-multipart>=0.0.9 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from mcp<2.0.0,>=1.8.1->starfish-core) (0.0.20)\n",
      "Requirement already satisfied: sse-starlette>=1.6.1 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from mcp<2.0.0,>=1.8.1->starfish-core) (2.3.5)\n",
      "Requirement already satisfied: starlette>=0.27 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from mcp<2.0.0,>=1.8.1->starfish-core) (0.46.2)\n",
      "Requirement already satisfied: uvicorn>=0.23.1 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from mcp<2.0.0,>=1.8.1->starfish-core) (0.34.2)\n",
      "Requirement already satisfied: requests<3.0,>=2.7 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from posthog<4.0.0,>=3.11.0->starfish-core) (2.32.3)\n",
      "Requirement already satisfied: six>=1.5 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from posthog<4.0.0,>=3.11.0->starfish-core) (1.17.0)\n",
      "Requirement already satisfied: monotonic>=1.5 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from posthog<4.0.0,>=3.11.0->starfish-core) (1.6)\n",
      "Requirement already satisfied: backoff>=1.10.0 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from posthog<4.0.0,>=3.11.0->starfish-core) (2.2.1)\n",
      "Requirement already satisfied: python-dateutil>2.1 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from posthog<4.0.0,>=3.11.0->starfish-core) (2.9.0.post0)\n",
      "Requirement already satisfied: distro>=1.5.0 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from posthog<4.0.0,>=3.11.0->starfish-core) (1.9.0)\n",
      "Requirement already satisfied: idna>=2.8 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from anyio>=4.5->mcp<2.0.0,>=1.8.1->starfish-core) (3.10)\n",
      "Requirement already satisfied: sniffio>=1.1 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from anyio>=4.5->mcp<2.0.0,>=1.8.1->starfish-core) (1.3.1)\n",
      "Requirement already satisfied: pycparser in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from cffi>=1.12->cryptography>=44.0.1->starfish-core) (2.22)\n",
      "Requirement already satisfied: certifi in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from httpx>=0.23.0->litellm<2.0.0,>=1.65.1->starfish-core) (2025.4.26)\n",
      "Requirement already satisfied: httpcore==1.* in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from httpx>=0.23.0->litellm<2.0.0,>=1.65.1->starfish-core) (1.0.9)\n",
      "Requirement already satisfied: h11>=0.16 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from httpcore==1.*->httpx>=0.23.0->litellm<2.0.0,>=1.65.1->starfish-core) (0.16.0)\n",
      "Requirement already satisfied: zipp>=3.20 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from importlib-metadata>=6.8.0->litellm<2.0.0,>=1.65.1->starfish-core) (3.21.0)\n",
      "Requirement already satisfied: MarkupSafe>=2.0 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from jinja2<4.0.0,>=3.1.2->litellm<2.0.0,>=1.65.1->starfish-core) (3.0.2)\n",
      "Requirement already satisfied: attrs>=22.2.0 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from jsonschema<5.0.0,>=4.22.0->litellm<2.0.0,>=1.65.1->starfish-core) (25.3.0)\n",
      "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from jsonschema<5.0.0,>=4.22.0->litellm<2.0.0,>=1.65.1->starfish-core) (2025.4.1)\n",
      "Requirement already satisfied: referencing>=0.28.4 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from jsonschema<5.0.0,>=4.22.0->litellm<2.0.0,>=1.65.1->starfish-core) (0.36.2)\n",
      "Requirement already satisfied: rpds-py>=0.7.1 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from jsonschema<5.0.0,>=4.22.0->litellm<2.0.0,>=1.65.1->starfish-core) (0.25.0)\n",
      "Requirement already satisfied: jiter<1,>=0.4.0 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from openai<1.76.0,>=1.68.2->litellm<2.0.0,>=1.65.1->starfish-core) (0.9.0)\n",
      "Requirement already satisfied: tqdm>4 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from openai<1.76.0,>=1.68.2->litellm<2.0.0,>=1.65.1->starfish-core) (4.67.1)\n",
      "Requirement already satisfied: annotated-types>=0.6.0 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from pydantic<3.0.0,>=2.0.0->litellm<2.0.0,>=1.65.1->starfish-core) (0.7.0)\n",
      "Requirement already satisfied: pydantic-core==2.33.2 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from pydantic<3.0.0,>=2.0.0->litellm<2.0.0,>=1.65.1->starfish-core) (2.33.2)\n",
      "Requirement already satisfied: typing-inspection>=0.4.0 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from pydantic<3.0.0,>=2.0.0->litellm<2.0.0,>=1.65.1->starfish-core) (0.4.0)\n",
      "Requirement already satisfied: charset-normalizer<4,>=2 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from requests<3.0,>=2.7->posthog<4.0.0,>=3.11.0->starfish-core) (3.4.2)\n",
      "Requirement already satisfied: urllib3<3,>=1.21.1 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from requests<3.0,>=2.7->posthog<4.0.0,>=3.11.0->starfish-core) (2.4.0)\n",
      "Requirement already satisfied: regex>=2022.1.18 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from tiktoken>=0.7.0->litellm<2.0.0,>=1.65.1->starfish-core) (2024.11.6)\n",
      "Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from aiohttp->litellm<2.0.0,>=1.65.1->starfish-core) (2.6.1)\n",
      "Requirement already satisfied: aiosignal>=1.1.2 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from aiohttp->litellm<2.0.0,>=1.65.1->starfish-core) (1.3.2)\n",
      "Requirement already satisfied: frozenlist>=1.1.1 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from aiohttp->litellm<2.0.0,>=1.65.1->starfish-core) (1.6.0)\n",
      "Requirement already satisfied: multidict<7.0,>=4.5 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from aiohttp->litellm<2.0.0,>=1.65.1->starfish-core) (6.4.3)\n",
      "Requirement already satisfied: propcache>=0.2.0 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from aiohttp->litellm<2.0.0,>=1.65.1->starfish-core) (0.3.1)\n",
      "Requirement already satisfied: yarl<2.0,>=1.17.0 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from aiohttp->litellm<2.0.0,>=1.65.1->starfish-core) (1.20.0)\n",
      "Requirement already satisfied: huggingface-hub<1.0,>=0.16.4 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from tokenizers->litellm<2.0.0,>=1.65.1->starfish-core) (0.31.2)\n",
      "Requirement already satisfied: filelock in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers->litellm<2.0.0,>=1.65.1->starfish-core) (3.18.0)\n",
      "Requirement already satisfied: fsspec>=2023.5.0 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers->litellm<2.0.0,>=1.65.1->starfish-core) (2025.3.2)\n",
      "Requirement already satisfied: packaging>=20.9 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers->litellm<2.0.0,>=1.65.1->starfish-core) (25.0)\n",
      "Requirement already satisfied: pyyaml>=5.1 in /Users/john/Documents/projects/aa/python/starfish/starfish/.venv/lib/python3.11/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers->litellm<2.0.0,>=1.65.1->starfish-core) (6.0.2)\n",
      "\n",
      "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m25.0.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m25.1.1\u001b[0m\n",
      "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
      "Note: you may need to restart the kernel to use updated packages.\n"
     ]
    }
   ],
   "source": [
    "#%pip install starfish-core\n",
    "%pip install --index-url https://test.pypi.org/simple/ \\\n",
    "                   --extra-index-url https://pypi.org/simple \\\n",
    "                    starfish-core"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[32m2025-05-23 22:50:10\u001b[0m | \u001b[33m\u001b[1mWARNING \u001b[0m | \u001b[33m\u001b[1mFailed to load environment variables from /Users/john/Documents/projects/aa/python/starfish/starfish/.env\u001b[0m\n"
     ]
    }
   ],
   "source": [
    "## Fix for Jupyter Notebook only β€” do NOT use in production\n",
    "## Enables async code execution in notebooks, but may cause issues with sync/async issues\n",
    "## For production, please run in standard .py files without this workaround\n",
    "## See: https://github.com/erdewit/nest_asyncio for more details\n",
    "import nest_asyncio\n",
    "nest_asyncio.apply()\n",
    "\n",
    "from starfish import StructuredLLM, data_factory\n",
    "from starfish.llm.utils import merge_structured_outputs\n",
    "\n",
    "from starfish.common.env_loader import load_env_file ## Load environment variables from .env file\n",
    "load_env_file()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [],
   "source": [
    "## Helper function mock llm call\n",
    "# When developing data pipelines with LLMs, making thousands of real API calls\n",
    "# can be expensive. Using mock LLM calls lets you test your pipeline's reliability,\n",
    "# failure handling, and recovery without spending money on API calls.\n",
    "from starfish.data_factory.utils.mock import mock_llm_call"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### 3. Working with Different Input Formats\n",
    "\n",
    "\n",
    "Data Factory is flexible with how you provide inputs. Let's demonstrate different ways to pass parameters to data_factory functions.\n",
    "\n",
    "'data' is a reserved keyword expecting list(dict) or tuple(dict) - this design make it super easy to pass large data and support HuggingFace and Pandas dataframe very easily"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[{'answer': 'New York_3'}, {'answer': 'New York_1'}, {'answer': 'New York_5'}]"
      ]
     },
     "execution_count": 26,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "## We will be using mock llm call for rest of example to save on token\n",
    "## Mock LLM call is a function that simulates an LLM API call with random delays (controlled by sleep_time) and occasional failures (controlled by fail_rate)\n",
    "await mock_llm_call(city_name=\"New York\", num_records_per_city=3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {},
   "outputs": [],
   "source": [
    "@data_factory(max_concurrency=100)\n",
    "async def input_format_mock_llm(city_name: str, num_records_per_city: int):\n",
    "    return await mock_llm_call(city_name=city_name, num_records_per_city=num_records_per_city, fail_rate=0.01)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[32m2025-05-23 22:50:10\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[1m\u001b[1m[JOB START]\u001b[0m \u001b[36mMaster Job ID: 4da82fc7-4112-4e05-b58c-53cf470747ad\u001b[0m | \u001b[33mLogging progress every 3 seconds\u001b[0m\u001b[0m\n",
      "\u001b[32m2025-05-23 22:50:10\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[1m[JOB PROGRESS] \u001b[32mCompleted: 0/5\u001b[0m | \u001b[33mRunning: 5\u001b[0m | \u001b[36mAttempted: 0\u001b[0m    (\u001b[32mCompleted: 0\u001b[0m, \u001b[31mFailed: 0\u001b[0m, \u001b[35mFiltered: 0\u001b[0m, \u001b[34mDuplicate: 0\u001b[0m, \u001b[1;31mInDeadQueue: 0\u001b[0m)\u001b[0m\n",
      "\u001b[32m2025-05-23 22:50:11\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[1m[JOB FINISHED] \u001b[1mFinal Status:\u001b[0m \u001b[32mCompleted: 5/5\u001b[0m | \u001b[33mAttempted: 5\u001b[0m (Failed: 0, Filtered: 0, Duplicate: 0, InDeadQueue: 0)\u001b[0m\n"
     ]
    }
   ],
   "source": [
    "# Format 1: Multiple lists that get zipped together\n",
    "input_format_data1 = input_format_mock_llm.run(city_name=[\"New York\", \"London\", \"Tokyo\", \"Paris\", \"Sydney\"], num_records_per_city=[2, 1, 1, 1, 1])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[32m2025-05-23 22:50:11\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[1m\u001b[1m[JOB START]\u001b[0m \u001b[36mMaster Job ID: 73973449-6069-485e-ac8c-b1b3a6b3f1a4\u001b[0m | \u001b[33mLogging progress every 3 seconds\u001b[0m\u001b[0m\n",
      "\u001b[32m2025-05-23 22:50:11\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[1m[JOB PROGRESS] \u001b[32mCompleted: 0/5\u001b[0m | \u001b[33mRunning: 5\u001b[0m | \u001b[36mAttempted: 0\u001b[0m    (\u001b[32mCompleted: 0\u001b[0m, \u001b[31mFailed: 0\u001b[0m, \u001b[35mFiltered: 0\u001b[0m, \u001b[34mDuplicate: 0\u001b[0m, \u001b[1;31mInDeadQueue: 0\u001b[0m)\u001b[0m\n",
      "\u001b[32m2025-05-23 22:50:12\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[1m[JOB FINISHED] \u001b[1mFinal Status:\u001b[0m \u001b[32mCompleted: 5/5\u001b[0m | \u001b[33mAttempted: 5\u001b[0m (Failed: 0, Filtered: 0, Duplicate: 0, InDeadQueue: 0)\u001b[0m\n"
     ]
    }
   ],
   "source": [
    "# Format 2: List + single value (single value gets broadcasted)\n",
    "input_format_data2 = input_format_mock_llm.run(city_name=[\"New York\", \"London\", \"Tokyo\", \"Paris\", \"Sydney\"], num_records_per_city=1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[32m2025-05-23 22:50:12\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[1m\u001b[1m[JOB START]\u001b[0m \u001b[36mMaster Job ID: aa9954f9-fc18-4b42-959e-fb2a897987c7\u001b[0m | \u001b[33mLogging progress every 3 seconds\u001b[0m\u001b[0m\n",
      "\u001b[32m2025-05-23 22:50:12\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[1m[JOB PROGRESS] \u001b[32mCompleted: 0/5\u001b[0m | \u001b[33mRunning: 5\u001b[0m | \u001b[36mAttempted: 0\u001b[0m    (\u001b[32mCompleted: 0\u001b[0m, \u001b[31mFailed: 0\u001b[0m, \u001b[35mFiltered: 0\u001b[0m, \u001b[34mDuplicate: 0\u001b[0m, \u001b[1;31mInDeadQueue: 0\u001b[0m)\u001b[0m\n",
      "\u001b[32m2025-05-23 22:50:13\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[1m[JOB FINISHED] \u001b[1mFinal Status:\u001b[0m \u001b[32mCompleted: 5/5\u001b[0m | \u001b[33mAttempted: 5\u001b[0m (Failed: 0, Filtered: 0, Duplicate: 0, InDeadQueue: 0)\u001b[0m\n"
     ]
    }
   ],
   "source": [
    "# Format 3: Special 'data' parameter\n",
    "# 'data' is a reserved keyword expecting list(dict) or tuple(dict)\n",
    "# Makes integration with various data sources easier\n",
    "input_format_data3 = input_format_mock_llm.run(data=[{\"city_name\": \"New York\", \"num_records_per_city\": 2}, {\"city_name\": \"London\", \"num_records_per_city\": 1}, {\"city_name\": \"Tokyo\", \"num_records_per_city\": 1}, {\"city_name\": \"Paris\", \"num_records_per_city\": 1}, {\"city_name\": \"Sydney\", \"num_records_per_city\": 1}])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### 4. Resilient error retry\n",
    "Data Factory automatically handles errors and retries, making your pipelines robust.\n",
    "\n",
    "Let's demonstrate with a high failure rate example."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[32m2025-05-23 22:50:13\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[1m\u001b[1m[JOB START]\u001b[0m \u001b[36mMaster Job ID: 730b766d-3c23-419a-a3dd-271d683818b1\u001b[0m | \u001b[33mLogging progress every 3 seconds\u001b[0m\u001b[0m\n",
      "\u001b[32m2025-05-23 22:50:13\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[1m[JOB PROGRESS] \u001b[32mCompleted: 0/25\u001b[0m | \u001b[33mRunning: 25\u001b[0m | \u001b[36mAttempted: 0\u001b[0m    (\u001b[32mCompleted: 0\u001b[0m, \u001b[31mFailed: 0\u001b[0m, \u001b[35mFiltered: 0\u001b[0m, \u001b[34mDuplicate: 0\u001b[0m, \u001b[1;31mInDeadQueue: 0\u001b[0m)\u001b[0m\n",
      "\u001b[32m2025-05-23 22:50:15\u001b[0m | \u001b[31m\u001b[1mERROR   \u001b[0m | \u001b[31m\u001b[1mError running task: Mock LLM failed to process city: Tokyo\u001b[0m\n",
      "\u001b[32m2025-05-23 22:50:15\u001b[0m | \u001b[31m\u001b[1mERROR   \u001b[0m | \u001b[31m\u001b[1mError running task: Mock LLM failed to process city: New York\u001b[0m\n",
      "\u001b[32m2025-05-23 22:50:16\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[1m[JOB PROGRESS] \u001b[32mCompleted: 23/25\u001b[0m | \u001b[33mRunning: 0\u001b[0m | \u001b[36mAttempted: 25\u001b[0m    (\u001b[32mCompleted: 23\u001b[0m, \u001b[31mFailed: 2\u001b[0m, \u001b[35mFiltered: 0\u001b[0m, \u001b[34mDuplicate: 0\u001b[0m, \u001b[1;31mInDeadQueue: 0\u001b[0m)\u001b[0m\n",
      "\u001b[32m2025-05-23 22:50:19\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[1m[JOB FINISHED] \u001b[1mFinal Status:\u001b[0m \u001b[32mCompleted: 25/25\u001b[0m | \u001b[33mAttempted: 27\u001b[0m (Failed: 2, Filtered: 0, Duplicate: 0, InDeadQueue: 0)\u001b[0m\n",
      "\n",
      "Successfully completed 25 out of 25 tasks\n",
      "Data Factory automatically handled the failures and continued processing\n",
      "The results only include successful tasks\n"
     ]
    }
   ],
   "source": [
    "@data_factory(max_concurrency=100)\n",
    "async def high_error_rate_mock_llm(city_name: str, num_records_per_city: int):\n",
    "    return await mock_llm_call(city_name=city_name, num_records_per_city=num_records_per_city, fail_rate=0.3) # Hardcode to 30% chance of failure\n",
    "\n",
    "# Process all cities - some will fail, but data_factory keeps going\n",
    "cities = [\"New York\", \"London\", \"Tokyo\", \"Paris\", \"Sydney\"] * 5  # 25 cities\n",
    "high_error_rate_mock_lllm_data = high_error_rate_mock_llm.run(city_name=cities, num_records_per_city=1)\n",
    "\n",
    "print(f\"\\nSuccessfully completed {len(high_error_rate_mock_lllm_data)} out of {len(cities)} tasks\")\n",
    "print(\"Data Factory automatically handled the failures and continued processing\")\n",
    "print(\"The results only include successful tasks\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### 5. Resume\n",
    "\n",
    "This is essential for long-running jobs with thousands of tasks.\n",
    "\n",
    "If a job is interrupted, you can pick up where you left off using one of two resume methods:\n",
    "\n",
    "\n",
    "1. **Same Session Resume**: If you're still in the same session where the job was interrupted, simply call - Same instance with .resume()\n",
    "\n",
    "2. **Cross-Session Resume**: If you've closed your notebook or lost your session, you can resume using the job ID:\n",
    "   ```python\n",
    "   from starfish import DataFactory\n",
    "   # Resume using the master job ID from a previous run\n",
    "   data_factory = DataFactory.resume_from_checkpoint(job_id=\"your_job_id\")\n",
    "   ```\n",
    "\n",
    "The key difference:\n",
    "- `resume()` uses the same DataFactory instance you defined\n",
    "- `resume_from_checkpoint()` reconstructs your DataFactory from persistent storage where tasks and progress are saved\n",
    "\n",
    "> **Note**: Google Colab users may experience issues with `resume_from_checkpoint()` due to how Colab works\n",
    "\n",
    "We're simulating an interruption here. In a real scenario, this might happen if your notebook errors out, is manually interrupted with a keyboard command, encounters API rate limits, or experiences any other issues that halt execution."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[32m2025-05-23 22:50:19\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[1m\u001b[1m[JOB START]\u001b[0m \u001b[36mMaster Job ID: 6829de29-0b83-4a64-835b-cc79cbad5e3a\u001b[0m | \u001b[33mLogging progress every 3 seconds\u001b[0m\u001b[0m\n",
      "\u001b[32m2025-05-23 22:50:19\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[1m[JOB PROGRESS] \u001b[32mCompleted: 0/100\u001b[0m | \u001b[33mRunning: 10\u001b[0m | \u001b[36mAttempted: 0\u001b[0m    (\u001b[32mCompleted: 0\u001b[0m, \u001b[31mFailed: 0\u001b[0m, \u001b[35mFiltered: 0\u001b[0m, \u001b[34mDuplicate: 0\u001b[0m, \u001b[1;31mInDeadQueue: 0\u001b[0m)\u001b[0m\n",
      "\u001b[32m2025-05-23 22:50:21\u001b[0m | \u001b[31m\u001b[1mERROR   \u001b[0m | \u001b[31m\u001b[1mError running task: Mock LLM failed to process city: Paris\u001b[0m\n",
      "\u001b[32m2025-05-23 22:50:21\u001b[0m | \u001b[31m\u001b[1mERROR   \u001b[0m | \u001b[31m\u001b[1mError running task: Mock LLM failed to process city: Sydney\u001b[0m\n",
      "\u001b[32m2025-05-23 22:50:21\u001b[0m | \u001b[31m\u001b[1mERROR   \u001b[0m | \u001b[31m\u001b[1mError running task: Mock LLM failed to process city: New York\u001b[0m\n",
      "\u001b[32m2025-05-23 22:50:21\u001b[0m | \u001b[31m\u001b[1mERROR   \u001b[0m | \u001b[31m\u001b[1mconsecutive_not_completed: in 3 times, stopping this job; please adjust factory config and input data then resume_from_checkpoint(6829de29-0b83-4a64-835b-cc79cbad5e3a)\u001b[0m\n",
      "\u001b[32m2025-05-23 22:50:21\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[1m[JOB FINISHED] \u001b[1mFinal Status:\u001b[0m \u001b[32mCompleted: 17/100\u001b[0m | \u001b[33mAttempted: 20\u001b[0m (Failed: 3, Filtered: 0, Duplicate: 0, InDeadQueue: 0)\u001b[0m\n"
     ]
    }
   ],
   "source": [
    "@data_factory(max_concurrency=10)\n",
    "async def re_run_mock_llm(city_name: str, num_records_per_city: int):\n",
    "    return await mock_llm_call(city_name=city_name, num_records_per_city=num_records_per_city, fail_rate=0.3)\n",
    "\n",
    "cities = [\"New York\", \"London\", \"Tokyo\", \"Paris\", \"Sydney\"] * 20  # 100 cities\n",
    "re_run_mock_llm_data_1 = re_run_mock_llm.run(city_name=cities, num_records_per_city=1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "When a job is interrupted, you'll see a message like:\n",
      "[RESUME INFO] 🚨 Job stopped unexpectedly. You can resume the job by calling .resume()\n",
      "\n",
      "To resume an interrupted job, simply call:\n",
      "interrupted_job_mock_llm.resume()\n",
      "\n",
      "For this example we have 17/100 data generated and not finished yet!\n"
     ]
    }
   ],
   "source": [
    "print(\"When a job is interrupted, you'll see a message like:\")\n",
    "print(\"[RESUME INFO] 🚨 Job stopped unexpectedly. You can resume the job by calling .resume()\")\n",
    "\n",
    "print(\"\\nTo resume an interrupted job, simply call:\")\n",
    "print(\"interrupted_job_mock_llm.resume()\")\n",
    "print('')\n",
    "print(f\"For this example we have {len(re_run_mock_llm_data_1)}/{len(cities)} data generated and not finished yet!\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[32m2025-05-23 22:50:22\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[1m\u001b[1m[JOB RESUME START]\u001b[0m \u001b[33mPICKING UP FROM WHERE THE JOB WAS LEFT OFF...\u001b[0m\n",
      "\u001b[0m\n",
      "\u001b[32m2025-05-23 22:50:22\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[1m\u001b[1m[RESUME PROGRESS] STATUS AT THE TIME OF RESUME:\u001b[0m \u001b[32mCompleted: 17 / 100\u001b[0m | \u001b[31mFailed: 3\u001b[0m | \u001b[31mDuplicate: 0\u001b[0m | \u001b[33mFiltered: 0\u001b[0m\u001b[0m\n",
      "\u001b[32m2025-05-23 22:50:22\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[1m[JOB PROGRESS] \u001b[32mCompleted: 17/100\u001b[0m | \u001b[33mRunning: 10\u001b[0m | \u001b[36mAttempted: 20\u001b[0m    (\u001b[32mCompleted: 17\u001b[0m, \u001b[31mFailed: 3\u001b[0m, \u001b[35mFiltered: 0\u001b[0m, \u001b[34mDuplicate: 0\u001b[0m, \u001b[1;31mInDeadQueue: 0\u001b[0m)\u001b[0m\n",
      "\u001b[32m2025-05-23 22:50:24\u001b[0m | \u001b[31m\u001b[1mERROR   \u001b[0m | \u001b[31m\u001b[1mError running task: Mock LLM failed to process city: Paris\u001b[0m\n",
      "\u001b[32m2025-05-23 22:50:24\u001b[0m | \u001b[31m\u001b[1mERROR   \u001b[0m | \u001b[31m\u001b[1mconsecutive_not_completed: in 3 times, stopping this job; please adjust factory config and input data then resume_from_checkpoint(6829de29-0b83-4a64-835b-cc79cbad5e3a)\u001b[0m\n",
      "\u001b[32m2025-05-23 22:50:24\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[1m[JOB FINISHED] \u001b[1mFinal Status:\u001b[0m \u001b[32mCompleted: 30/100\u001b[0m | \u001b[33mAttempted: 34\u001b[0m (Failed: 4, Filtered: 0, Duplicate: 0, InDeadQueue: 0)\u001b[0m\n"
     ]
    }
   ],
   "source": [
    "## Lets keep continue the rest of run by resume_from_checkpoint \n",
    "re_run_mock_llm_data_2 = re_run_mock_llm.resume()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Now we still able to finished with what is left!! 30 data generated!\n"
     ]
    }
   ],
   "source": [
    "print(f\"Now we still able to finished with what is left!! {len(re_run_mock_llm_data_2)} data generated!\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### 6. Dry run\n",
    "Before running a large job, you can do a \"dry run\" to test your pipeline. This only processes a single item and doesn't save state to the database."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[32m2025-05-23 22:50:24\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[1m\u001b[1m[JOB START]\u001b[0m \u001b[36mMaster Job ID: None\u001b[0m | \u001b[33mLogging progress every 3 seconds\u001b[0m\u001b[0m\n",
      "\u001b[32m2025-05-23 22:50:24\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[1m[JOB PROGRESS] \u001b[32mCompleted: 0/1\u001b[0m | \u001b[33mRunning: 1\u001b[0m | \u001b[36mAttempted: 0\u001b[0m    (\u001b[32mCompleted: 0\u001b[0m, \u001b[31mFailed: 0\u001b[0m, \u001b[35mFiltered: 0\u001b[0m, \u001b[34mDuplicate: 0\u001b[0m, \u001b[1;31mInDeadQueue: 0\u001b[0m)\u001b[0m\n",
      "\u001b[32m2025-05-23 22:50:25\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[1m[JOB FINISHED] \u001b[1mFinal Status:\u001b[0m \u001b[32mCompleted: 1/0\u001b[0m | \u001b[33mAttempted: 1\u001b[0m (Failed: 0, Filtered: 0, Duplicate: 0, InDeadQueue: 0)\u001b[0m\n"
     ]
    }
   ],
   "source": [
    "@data_factory(max_concurrency=10)\n",
    "async def dry_run_mock_llm(city_name: str, num_records_per_city: int):\n",
    "    return await mock_llm_call(city_name=city_name, num_records_per_city=num_records_per_city, fail_rate=0.3)\n",
    "\n",
    "dry_run_mock_llm_data = dry_run_mock_llm.dry_run(city_name=[\"New York\", \"London\", \"Tokyo\", \"Paris\", \"Sydney\"]*20, num_records_per_city=1)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### 8. Advanced Usage\n",
    "Data Factory offers more advanced capabilities for complete pipeline customization, including hooks that execute at key stages and shareable state to coordinate between tasks. These powerful features enable complex workflows and fine-grained control. Our dedicated examples for advanced data_factory usage will be coming soon!"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}