Spaces:
Running
Running
File size: 25,618 Bytes
5301c48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from starfish import data_gen_template"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['starfish/generate_func_call_dataset', 'starfish/generate_by_topic']"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data_gen_template.list()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"loaded = data_gen_template.get(\"starfish/generate_by_topic\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"get the template input_data schema and example"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[32m2025-05-23 11:23:57\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[1mPlease run the template with this input schema\u001b[0m\n",
"\u001b[32m2025-05-23 11:23:57\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[1m{\n",
" \"description\": \"Input schema for the generate_by_topic template.\\n\\nIMPORTANT: This Pydantic model is the single source of truth for default values.\\nThe validation and default values are controlled by this model, not the function signature.\",\n",
" \"properties\": {\n",
" \"user_instruction\": {\n",
" \"anyOf\": [\n",
" {\n",
" \"type\": \"string\"\n",
" },\n",
" {\n",
" \"type\": \"null\"\n",
" }\n",
" ],\n",
" \"default\": null,\n",
" \"title\": \"User Instruction\"\n",
" },\n",
" \"num_records\": {\n",
" \"anyOf\": [\n",
" {\n",
" \"type\": \"integer\"\n",
" },\n",
" {\n",
" \"type\": \"null\"\n",
" }\n",
" ],\n",
" \"default\": 10,\n",
" \"title\": \"Num Records\"\n",
" },\n",
" \"records_per_topic\": {\n",
" \"default\": 10,\n",
" \"title\": \"Records Per Topic\",\n",
" \"type\": \"integer\"\n",
" },\n",
" \"topics\": {\n",
" \"anyOf\": [\n",
" {\n",
" \"items\": {\n",
" \"anyOf\": [\n",
" {\n",
" \"type\": \"string\"\n",
" },\n",
" {\n",
" \"additionalProperties\": {\n",
" \"type\": \"integer\"\n",
" },\n",
" \"type\": \"object\"\n",
" }\n",
" ]\n",
" },\n",
" \"type\": \"array\"\n",
" },\n",
" {\n",
" \"type\": \"null\"\n",
" }\n",
" ],\n",
" \"default\": null,\n",
" \"title\": \"Topics\"\n",
" },\n",
" \"topic_model_name\": {\n",
" \"default\": \"openai/gpt-4o-mini\",\n",
" \"title\": \"Topic Model Name\",\n",
" \"type\": \"string\"\n",
" },\n",
" \"topic_model_kwargs\": {\n",
" \"anyOf\": [\n",
" {\n",
" \"additionalProperties\": true,\n",
" \"type\": \"object\"\n",
" },\n",
" {\n",
" \"type\": \"null\"\n",
" }\n",
" ],\n",
" \"default\": null,\n",
" \"title\": \"Topic Model Kwargs\"\n",
" },\n",
" \"generation_model_name\": {\n",
" \"default\": \"openai/gpt-4o-mini\",\n",
" \"title\": \"Generation Model Name\",\n",
" \"type\": \"string\"\n",
" },\n",
" \"generation_model_kwargs\": {\n",
" \"anyOf\": [\n",
" {\n",
" \"additionalProperties\": true,\n",
" \"type\": \"object\"\n",
" },\n",
" {\n",
" \"type\": \"null\"\n",
" }\n",
" ],\n",
" \"default\": null,\n",
" \"title\": \"Generation Model Kwargs\"\n",
" },\n",
" \"output_schema\": {\n",
" \"anyOf\": [\n",
" {\n",
" \"items\": {\n",
" \"additionalProperties\": true,\n",
" \"type\": \"object\"\n",
" },\n",
" \"type\": \"array\"\n",
" },\n",
" {\n",
" \"additionalProperties\": true,\n",
" \"type\": \"object\"\n",
" },\n",
" {\n",
" \"type\": \"null\"\n",
" }\n",
" ],\n",
" \"default\": [\n",
" {\n",
" \"name\": \"question\",\n",
" \"type\": \"str\"\n",
" },\n",
" {\n",
" \"name\": \"answer\",\n",
" \"type\": \"str\"\n",
" }\n",
" ],\n",
" \"title\": \"Output Schema\"\n",
" },\n",
" \"data_factory_config\": {\n",
" \"anyOf\": [\n",
" {\n",
" \"additionalProperties\": true,\n",
" \"type\": \"object\"\n",
" },\n",
" {\n",
" \"type\": \"null\"\n",
" }\n",
" ],\n",
" \"default\": {},\n",
" \"title\": \"Data Factory Config\"\n",
" }\n",
" },\n",
" \"title\": \"GenerateByTopicInput\",\n",
" \"type\": \"object\"\n",
"}\u001b[0m\n"
]
}
],
"source": [
"loaded.print_schema()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[32m2025-05-23 11:24:01\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[1mHere is an example with api_contract.name as weather_api.get_current_weather\u001b[0m\n",
"\u001b[32m2025-05-23 11:24:01\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[1m{\n",
" \"user_instruction\": \"Generate Q&A pairs about machine learning concepts\",\n",
" \"num_records\": 100,\n",
" \"records_per_topic\": 5,\n",
" \"topics\": [\n",
" \"supervised learning\",\n",
" \"unsupervised learning\",\n",
" {\"reinforcement learning\": 3}, # This means generate 3 records for this topic\n",
" \"neural networks\",\n",
" ],\n",
" \"topic_model_name\": \"openai/gpt-4\",\n",
" \"topic_model_kwargs\": {\"temperature\": 0.7},\n",
" \"generation_model_name\": \"openai/gpt-4\",\n",
" \"generation_model_kwargs\": {\"temperature\": 0.8, \"max_tokens\": 200},\n",
" \"output_schema\": [\n",
" {\"name\": \"question\", \"type\": \"str\"},\n",
" {\"name\": \"answer\", \"type\": \"str\"},\n",
" {\"name\": \"difficulty\", \"type\": \"str\"}, # Added an additional field\n",
" ],\n",
" \"data_factory_config\": {\"max_concurrency\": 4, \"task_runner_timeout\": 60 * 2},\n",
" }\u001b[0m\n"
]
}
],
"source": [
"loaded.print_example()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"π Function Calling Dataset Generation Pipeline\n",
"============================================================\n",
"π Process Overview:\n",
" 1. Calculate optimal data distribution\n",
" 2. Generate diverse topics\n",
" 3. Create subtopics for each topic\n",
" 4. Generate query-answer pairs\n",
" 5. Verify and validate generated data\n",
" 6. Regenerate failed cases\n",
"============================================================\n",
"π Data Distribution Plan:\n",
" β’ Requested: 10 records\n",
" β’ Distribution: 1 topics Γ 1 subtopics Γ 10 records\n",
" β’ Total generation: 10 records\n",
" β’ API calls needed: 3\n",
"\n",
"π― Step 1: Generating diverse topics...\n",
" β
Generated 1 topics\n",
"\n",
"πΏ Step 2: Creating subtopics for each topic...\n",
"\u001b[32m2025-05-23 00:27:04\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[1m\u001b[1m[JOB START]\u001b[0m \u001b[36mMaster Job ID: e6763e50-6438-4df5-81a9-5a68ce3f8468\u001b[0m | \u001b[33mLogging progress every 3 seconds\u001b[0m\u001b[0m\n",
"\u001b[32m2025-05-23 00:27:04\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[1m[JOB PROGRESS] \u001b[32mCompleted: 0/1\u001b[0m | \u001b[33mRunning: 1\u001b[0m | \u001b[36mAttempted: 0\u001b[0m (\u001b[32mCompleted: 0\u001b[0m, \u001b[31mFailed: 0\u001b[0m, \u001b[35mFiltered: 0\u001b[0m, \u001b[34mDuplicate: 0\u001b[0m, \u001b[1;31mInDeadQueue: 0\u001b[0m)\u001b[0m\n",
"\u001b[32m2025-05-23 00:27:06\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[1m[JOB FINISHED] \u001b[1mFinal Status:\u001b[0m \u001b[32mCompleted: 1/1\u001b[0m | \u001b[33mAttempted: 1\u001b[0m (Failed: 0, Filtered: 0, Duplicate: 0, InDeadQueue: 0)\u001b[0m\n",
" β
Generated 1 subtopics total\n",
"\n",
"π¬ Step 3: Generating query-answer pairs...\n",
"\u001b[32m2025-05-23 00:27:06\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[1m\u001b[1m[JOB START]\u001b[0m \u001b[36mMaster Job ID: 1931c5c8-c1f3-4268-98b7-1a5295b8abf2\u001b[0m | \u001b[33mLogging progress every 3 seconds\u001b[0m\u001b[0m\n",
"\u001b[32m2025-05-23 00:27:06\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[1m[JOB PROGRESS] \u001b[32mCompleted: 0/1\u001b[0m | \u001b[33mRunning: 1\u001b[0m | \u001b[36mAttempted: 0\u001b[0m (\u001b[32mCompleted: 0\u001b[0m, \u001b[31mFailed: 0\u001b[0m, \u001b[35mFiltered: 0\u001b[0m, \u001b[34mDuplicate: 0\u001b[0m, \u001b[1;31mInDeadQueue: 0\u001b[0m)\u001b[0m\n",
"\u001b[32m2025-05-23 00:27:09\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[1m[JOB PROGRESS] \u001b[32mCompleted: 0/1\u001b[0m | \u001b[33mRunning: 1\u001b[0m | \u001b[36mAttempted: 0\u001b[0m (\u001b[32mCompleted: 0\u001b[0m, \u001b[31mFailed: 0\u001b[0m, \u001b[35mFiltered: 0\u001b[0m, \u001b[34mDuplicate: 0\u001b[0m, \u001b[1;31mInDeadQueue: 0\u001b[0m)\u001b[0m\n",
"\u001b[32m2025-05-23 00:27:12\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[1m[JOB PROGRESS] \u001b[32mCompleted: 0/1\u001b[0m | \u001b[33mRunning: 1\u001b[0m | \u001b[36mAttempted: 0\u001b[0m (\u001b[32mCompleted: 0\u001b[0m, \u001b[31mFailed: 0\u001b[0m, \u001b[35mFiltered: 0\u001b[0m, \u001b[34mDuplicate: 0\u001b[0m, \u001b[1;31mInDeadQueue: 0\u001b[0m)\u001b[0m\n",
"\u001b[32m2025-05-23 00:27:15\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[1m[JOB PROGRESS] \u001b[32mCompleted: 0/1\u001b[0m | \u001b[33mRunning: 1\u001b[0m | \u001b[36mAttempted: 0\u001b[0m (\u001b[32mCompleted: 0\u001b[0m, \u001b[31mFailed: 0\u001b[0m, \u001b[35mFiltered: 0\u001b[0m, \u001b[34mDuplicate: 0\u001b[0m, \u001b[1;31mInDeadQueue: 0\u001b[0m)\u001b[0m\n",
"\u001b[32m2025-05-23 00:27:18\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[1m[JOB PROGRESS] \u001b[32mCompleted: 0/1\u001b[0m | \u001b[33mRunning: 1\u001b[0m | \u001b[36mAttempted: 0\u001b[0m (\u001b[32mCompleted: 0\u001b[0m, \u001b[31mFailed: 0\u001b[0m, \u001b[35mFiltered: 0\u001b[0m, \u001b[34mDuplicate: 0\u001b[0m, \u001b[1;31mInDeadQueue: 0\u001b[0m)\u001b[0m\n",
"\u001b[32m2025-05-23 00:27:21\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[1m[JOB PROGRESS] \u001b[32mCompleted: 0/1\u001b[0m | \u001b[33mRunning: 1\u001b[0m | \u001b[36mAttempted: 0\u001b[0m (\u001b[32mCompleted: 0\u001b[0m, \u001b[31mFailed: 0\u001b[0m, \u001b[35mFiltered: 0\u001b[0m, \u001b[34mDuplicate: 0\u001b[0m, \u001b[1;31mInDeadQueue: 0\u001b[0m)\u001b[0m\n",
"\u001b[32m2025-05-23 00:27:24\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[1m[JOB PROGRESS] \u001b[32mCompleted: 0/1\u001b[0m | \u001b[33mRunning: 1\u001b[0m | \u001b[36mAttempted: 0\u001b[0m (\u001b[32mCompleted: 0\u001b[0m, \u001b[31mFailed: 0\u001b[0m, \u001b[35mFiltered: 0\u001b[0m, \u001b[34mDuplicate: 0\u001b[0m, \u001b[1;31mInDeadQueue: 0\u001b[0m)\u001b[0m\n",
"\u001b[32m2025-05-23 00:27:27\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[1m[JOB PROGRESS] \u001b[32mCompleted: 0/1\u001b[0m | \u001b[33mRunning: 1\u001b[0m | \u001b[36mAttempted: 0\u001b[0m (\u001b[32mCompleted: 0\u001b[0m, \u001b[31mFailed: 0\u001b[0m, \u001b[35mFiltered: 0\u001b[0m, \u001b[34mDuplicate: 0\u001b[0m, \u001b[1;31mInDeadQueue: 0\u001b[0m)\u001b[0m\n",
"\u001b[32m2025-05-23 00:27:28\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[1m[JOB FINISHED] \u001b[1mFinal Status:\u001b[0m \u001b[32mCompleted: 1/1\u001b[0m | \u001b[33mAttempted: 1\u001b[0m (Failed: 0, Filtered: 0, Duplicate: 0, InDeadQueue: 0)\u001b[0m\n",
" β
Generated 10 initial query-answer pairs\n",
"\n",
"π Step 4: Verifying data quality...\n",
"\u001b[32m2025-05-23 00:27:28\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[1m\u001b[1m[JOB START]\u001b[0m \u001b[36mMaster Job ID: f036c07c-1cd2-4690-be92-bac359e45544\u001b[0m | \u001b[33mLogging progress every 3 seconds\u001b[0m\u001b[0m\n",
"\u001b[32m2025-05-23 00:27:28\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[1m[JOB PROGRESS] \u001b[32mCompleted: 0/10\u001b[0m | \u001b[33mRunning: 10\u001b[0m | \u001b[36mAttempted: 0\u001b[0m (\u001b[32mCompleted: 0\u001b[0m, \u001b[31mFailed: 0\u001b[0m, \u001b[35mFiltered: 0\u001b[0m, \u001b[34mDuplicate: 0\u001b[0m, \u001b[1;31mInDeadQueue: 0\u001b[0m)\u001b[0m\n",
"\u001b[32m2025-05-23 00:27:31\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[1m[JOB PROGRESS] \u001b[32mCompleted: 0/10\u001b[0m | \u001b[33mRunning: 10\u001b[0m | \u001b[36mAttempted: 0\u001b[0m (\u001b[32mCompleted: 0\u001b[0m, \u001b[31mFailed: 0\u001b[0m, \u001b[35mFiltered: 0\u001b[0m, \u001b[34mDuplicate: 0\u001b[0m, \u001b[1;31mInDeadQueue: 0\u001b[0m)\u001b[0m\n",
"\u001b[32m2025-05-23 00:27:34\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[1m[JOB PROGRESS] \u001b[32mCompleted: 9/10\u001b[0m | \u001b[33mRunning: 1\u001b[0m | \u001b[36mAttempted: 9\u001b[0m (\u001b[32mCompleted: 9\u001b[0m, \u001b[31mFailed: 0\u001b[0m, \u001b[35mFiltered: 0\u001b[0m, \u001b[34mDuplicate: 0\u001b[0m, \u001b[1;31mInDeadQueue: 0\u001b[0m)\u001b[0m\n",
"\u001b[32m2025-05-23 00:27:35\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[1m[JOB FINISHED] \u001b[1mFinal Status:\u001b[0m \u001b[32mCompleted: 10/10\u001b[0m | \u001b[33mAttempted: 10\u001b[0m (Failed: 0, Filtered: 0, Duplicate: 0, InDeadQueue: 0)\u001b[0m\n",
"\u001b[32m2025-05-23 00:27:35\u001b[0m | \u001b[33m\u001b[1mWARNING \u001b[0m | \u001b[33m\u001b[1mCannot serialize function for resume due to unsupported type: cannot pickle '_hashlib.HMAC' object\u001b[0m\n",
" β
Quality check complete: 9 passed, 1 failed\n",
"\n",
"π Step 5: Regenerating failed cases...\n",
"\u001b[32m2025-05-23 00:27:35\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[1m\u001b[1m[JOB START]\u001b[0m \u001b[36mMaster Job ID: 3d6183a2-e465-4807-9e18-cbb84dc0d28f\u001b[0m | \u001b[33mLogging progress every 3 seconds\u001b[0m\u001b[0m\n",
"\u001b[32m2025-05-23 00:27:35\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[1m[JOB PROGRESS] \u001b[32mCompleted: 0/1\u001b[0m | \u001b[33mRunning: 1\u001b[0m | \u001b[36mAttempted: 0\u001b[0m (\u001b[32mCompleted: 0\u001b[0m, \u001b[31mFailed: 0\u001b[0m, \u001b[35mFiltered: 0\u001b[0m, \u001b[34mDuplicate: 0\u001b[0m, \u001b[1;31mInDeadQueue: 0\u001b[0m)\u001b[0m\n",
"\u001b[32m2025-05-23 00:27:37\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[1m[JOB FINISHED] \u001b[1mFinal Status:\u001b[0m \u001b[32mCompleted: 1/1\u001b[0m | \u001b[33mAttempted: 1\u001b[0m (Failed: 0, Filtered: 0, Duplicate: 0, InDeadQueue: 0)\u001b[0m\n",
"\u001b[32m2025-05-23 00:27:37\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[1m\u001b[1m[JOB START]\u001b[0m \u001b[36mMaster Job ID: 8754bec6-25e3-40bd-9743-f2763fc1091f\u001b[0m | \u001b[33mLogging progress every 3 seconds\u001b[0m\u001b[0m\n",
"\u001b[32m2025-05-23 00:27:37\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[1m[JOB PROGRESS] \u001b[32mCompleted: 0/1\u001b[0m | \u001b[33mRunning: 1\u001b[0m | \u001b[36mAttempted: 0\u001b[0m (\u001b[32mCompleted: 0\u001b[0m, \u001b[31mFailed: 0\u001b[0m, \u001b[35mFiltered: 0\u001b[0m, \u001b[34mDuplicate: 0\u001b[0m, \u001b[1;31mInDeadQueue: 0\u001b[0m)\u001b[0m\n",
"\u001b[32m2025-05-23 00:27:40\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[1m[JOB PROGRESS] \u001b[32mCompleted: 0/1\u001b[0m | \u001b[33mRunning: 1\u001b[0m | \u001b[36mAttempted: 0\u001b[0m (\u001b[32mCompleted: 0\u001b[0m, \u001b[31mFailed: 0\u001b[0m, \u001b[35mFiltered: 0\u001b[0m, \u001b[34mDuplicate: 0\u001b[0m, \u001b[1;31mInDeadQueue: 0\u001b[0m)\u001b[0m\n",
"\u001b[32m2025-05-23 00:27:41\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[1m[JOB FINISHED] \u001b[1mFinal Status:\u001b[0m \u001b[32mCompleted: 1/1\u001b[0m | \u001b[33mAttempted: 1\u001b[0m (Failed: 0, Filtered: 0, Duplicate: 0, InDeadQueue: 0)\u001b[0m\n",
"\u001b[32m2025-05-23 00:27:41\u001b[0m | \u001b[33m\u001b[1mWARNING \u001b[0m | \u001b[33m\u001b[1mCannot serialize function for resume due to unsupported type: cannot pickle '_hashlib.HMAC' object\u001b[0m\n",
" β
Regenerated 1 pairs, 1 still failing\n",
"\u001b[32m2025-05-23 00:27:41\u001b[0m | \u001b[33m\u001b[1mWARNING \u001b[0m | \u001b[33m\u001b[1mSome data still failing after regeneration - prompts may need improvement\u001b[0m\n",
"π― Perfect! Generated exactly 10 records as requested\n",
"\n",
"π Generation Complete!\n",
"============================================================\n",
"π Final Results:\n",
" β’ Records generated: 10\n",
" β’ Success rate: 10/10 (100.0%)\n",
" β’ Distribution used: 1T Γ 1S Γ 10R\n",
"\n",
"β If you found this helpful, please consider starring our repo!\n",
" Your support means the world to us! π\n",
"============================================================\n"
]
}
],
"source": [
"input_data = {\n",
" \"user_instruction\": \"Generate Q&A pairs about machine learning concepts\",\n",
" \"num_records\": 100,\n",
" \"records_per_topic\": 5,\n",
" \"topics\": [\n",
" \"supervised learning\",\n",
" \"unsupervised learning\",\n",
" {\"reinforcement learning\": 3}, # This means generate 3 records for this topic\n",
" \"neural networks\",\n",
" ],\n",
" \"topic_model_name\": \"openai/gpt-4\",\n",
" \"topic_model_kwargs\": {\"temperature\": 0.7},\n",
" \"generation_model_name\": \"openai/gpt-4\",\n",
" \"generation_model_kwargs\": {\"temperature\": 0.8, \"max_tokens\": 200},\n",
" \"output_schema\": [\n",
" {\"name\": \"question\", \"type\": \"str\"},\n",
" {\"name\": \"answer\", \"type\": \"str\"},\n",
" {\"name\": \"difficulty\", \"type\": \"str\"}, # Added an additional field\n",
" ],\n",
" \"data_factory_config\": {\"max_concurrency\": 4, \"task_runner_timeout\": 60 * 2},\n",
" }\n",
"data = await loaded.run(input_data=input_data)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'query': 'Can you check the current weather in Toronto and Rome? Use Fahrenheit for both locations.',\n",
" 'answer': [{'name': 'weather_api.get_current_weather',\n",
" 'arguments': {'location': 'Toronto', 'units': 'Fahrenheit'}},\n",
" {'name': 'weather_api.get_current_weather',\n",
" 'arguments': {'location': 'Rome', 'units': 'Fahrenheit'}}]},\n",
" {'query': 'Get me the current weather in Mumbai and also in Johannesburg, please use Fahrenheit for both.',\n",
" 'answer': [{'name': 'weather_api.get_current_weather',\n",
" 'arguments': {'location': 'Mumbai', 'units': 'Fahrenheit'}},\n",
" {'name': 'weather_api.get_current_weather',\n",
" 'arguments': {'location': 'Johannesburg', 'units': 'Fahrenheit'}}]},\n",
" {'query': 'I need the current weather for Sydney and London. What are the temperatures in Celsius?',\n",
" 'answer': [{'name': 'weather_api.get_current_weather',\n",
" 'arguments': {'location': 'Sydney', 'units': 'Celsius'}},\n",
" {'name': 'weather_api.get_current_weather',\n",
" 'arguments': {'location': 'London', 'units': 'Celsius'}}]},\n",
" {'query': 'Please find the current weather in Buenos Aires and Cape Town, using Celsius for Buenos Aires.',\n",
" 'answer': [{'name': 'weather_api.get_current_weather',\n",
" 'arguments': {'location': 'Buenos Aires', 'units': 'Celsius'}},\n",
" {'name': 'weather_api.get_current_weather',\n",
" 'arguments': {'location': 'Cape Town'}}]},\n",
" {'query': 'Whatβs the weather like in Moscow? Also, can you get the current conditions in Beijing?',\n",
" 'answer': [{'name': 'weather_api.get_current_weather',\n",
" 'arguments': {'location': 'Moscow'}},\n",
" {'name': 'weather_api.get_current_weather',\n",
" 'arguments': {'location': 'Beijing'}}]},\n",
" {'query': 'Can you tell me the current weather in Tokyo and in Los Angeles? Please provide both in Fahrenheit.',\n",
" 'answer': [{'name': 'weather_api.get_current_weather',\n",
" 'arguments': {'location': 'Tokyo', 'units': 'Fahrenheit'}},\n",
" {'name': 'weather_api.get_current_weather',\n",
" 'arguments': {'location': 'Los Angeles', 'units': 'Fahrenheit'}}]},\n",
" {'query': 'Please provide the current weather for Berlin and Cairo, using Celsius for Berlin and no specific unit for Cairo.',\n",
" 'answer': [{'name': 'weather_api.get_current_weather',\n",
" 'arguments': {'location': 'Berlin', 'units': 'Celsius'}},\n",
" {'name': 'weather_api.get_current_weather',\n",
" 'arguments': {'location': 'Cairo'}}]},\n",
" {'query': 'I need the current weather in Seattle and in Santiago. Use Fahrenheit for Seattle and Celsius for Santiago.',\n",
" 'answer': [{'name': 'weather_api.get_current_weather',\n",
" 'arguments': {'location': 'Seattle', 'units': 'Fahrenheit'}},\n",
" {'name': 'weather_api.get_current_weather',\n",
" 'arguments': {'location': 'Santiago', 'units': 'Celsius'}}]},\n",
" {'query': \"What's the current temperature in San Francisco? Can you also check the weather in Paris?\",\n",
" 'answer': [{'name': 'weather_api.get_current_weather',\n",
" 'arguments': {'location': 'San Francisco'}},\n",
" {'name': 'weather_api.get_current_weather',\n",
" 'arguments': {'location': 'Paris'}}]},\n",
" {'query': 'What is the current weather in New York City? And can you also provide the temperature in Celsius?',\n",
" 'answer': [{'name': 'weather_api.get_current_weather',\n",
" 'arguments': {'location': 'New York City', 'units': 'Celsius'}}]}]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|