Spaces:
Running
Running
File size: 20,862 Bytes
5301c48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 |
"""HuggingFace service for interacting with the HuggingFace API.
This service focuses on model discovery, search, and downloading from HuggingFace.
"""
import asyncio
import os
import shutil
import tempfile
from typing import Any, Dict, List, Optional, Tuple
import aiohttp
from starfish.common.logger import get_logger
##TODO we will need to move the dependencies of ollma to a seperate file so we can support other model hosting providers like vllm. but for now it is fine
from starfish.llm.backend.ollama_adapter import delete_model as delete_ollama_model
from starfish.llm.backend.ollama_adapter import is_model_available
logger = get_logger(__name__)
HF_API_BASE = "https://huggingface.co/api"
#############################################
# HuggingFace Exception Types
#############################################
class HuggingFaceError(Exception):
"""Base exception for HuggingFace-related errors."""
pass
class HuggingFaceAuthError(HuggingFaceError):
"""Error raised when authentication is required but missing."""
pass
class HuggingFaceModelNotFoundError(HuggingFaceError):
"""Error raised when a model is not found."""
pass
class HuggingFaceAPIError(HuggingFaceError):
"""Error raised for general API errors."""
pass
#############################################
# Core HuggingFace API Functions
#############################################
def get_hf_token() -> Optional[str]:
"""Get HuggingFace API token from environment variable."""
return os.environ.get("HUGGING_FACE_HUB_TOKEN")
async def _make_hf_request(url: str, params: Optional[Dict] = None, check_auth: bool = True) -> Tuple[bool, Any]:
"""Make a request to HuggingFace API with proper error handling.
Args:
url: API URL to request
params: Optional query parameters
check_auth: Whether to include auth token if available
Returns:
Tuple of (success, data/error_message)
"""
headers = {}
if check_auth:
token = get_hf_token()
if token:
headers["Authorization"] = f"Bearer {token}"
try:
async with aiohttp.ClientSession() as session:
async with session.get(url, params=params, headers=headers) as response:
if response.status == 200:
return True, await response.json()
elif response.status in (401, 403):
return False, "Authentication required. Please set the {HUGGING_FACE_HUB_TOKEN} environment variable."
else:
return False, f"Request failed with status {response.status}"
except Exception as e:
return False, f"Request error: {str(e)}"
async def list_hf_models(query: str = "", limit: int = 20) -> List[Dict[str, Any]]:
"""List/search models on HuggingFace.
Args:
query: Optional search query
limit: Maximum number of results
Returns:
List of model info dictionaries
"""
params = {"limit": limit}
if query:
params["search"] = query
success, result = await _make_hf_request(f"{HF_API_BASE}/models", params)
if success:
# Filter to only include models that are likely to work with Ollama
# (supporting language models that might have GGUF variants)
return [
{
"id": model.get("id", ""),
"name": model.get("modelId", model.get("id", "")),
"downloads": model.get("downloads", 0),
"likes": model.get("likes", 0),
"tags": model.get("tags", []),
"requires_auth": "gated" in model.get("tags", []) or model.get("private", False),
}
for model in result
if "text-generation" in model.get("pipeline_tag", "") or any(tag in model.get("tags", []) for tag in ["llm", "gguf", "quantized"])
]
else:
logger.error(f"Failed to list models: {result}")
return []
async def get_imported_hf_models() -> List[str]:
"""Get list of HuggingFace models that have been imported to Ollama.
Returns:
List of model names in Ollama that originated from HuggingFace
"""
from starfish.llm.backend.ollama_adapter import list_models
models = await list_models()
return [model.get("name", "") for model in models if model.get("name", "").startswith("hf-")]
async def check_model_exists(model_id: str) -> bool:
"""Check if a model exists on HuggingFace.
Args:
model_id: HuggingFace model ID (e.g., "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B")
Returns:
bool: True if model exists, False otherwise
"""
success, _ = await _make_hf_request(f"{HF_API_BASE}/models/{model_id}")
return success
async def find_gguf_files(model_id: str) -> List[Dict[str, Any]]:
"""Find GGUF files available for a HuggingFace model.
Args:
model_id: HuggingFace model ID
Returns:
List of file objects containing GGUF files
"""
# First try to check the main branch
success, data = await _make_hf_request(f"{HF_API_BASE}/models/{model_id}/tree/main")
if not success:
# Try checking the master branch as fallback
success, data = await _make_hf_request(f"{HF_API_BASE}/models/{model_id}/tree/master")
if not success:
return []
if not isinstance(data, list):
logger.error(f"Unexpected data format from HuggingFace API: {type(data)}")
return []
# First look for GGUF files
gguf_files = [file for file in data if isinstance(file, dict) and file.get("path", "").lower().endswith(".gguf")]
# If we found GGUF files, return them
if gguf_files:
logger.info(f"Found {len(gguf_files)} GGUF files for model {model_id}")
return gguf_files
# Otherwise, look for GGUF files in subdirectories
for item in data:
if isinstance(item, dict) and item.get("type") == "directory":
dir_path = item.get("path")
if dir_path:
# Common directories where GGUF files are stored
if any(keyword in dir_path.lower() for keyword in ["gguf", "quant", "quantized", "weights", "models"]):
success, subdir_data = await _make_hf_request(f"{HF_API_BASE}/models/{model_id}/tree/main/{dir_path}")
if success and isinstance(subdir_data, list):
subdir_gguf_files = [file for file in subdir_data if isinstance(file, dict) and file.get("path", "").lower().endswith(".gguf")]
if subdir_gguf_files:
logger.info(f"Found {len(subdir_gguf_files)} GGUF files in subdirectory {dir_path}")
gguf_files.extend(subdir_gguf_files)
return gguf_files
async def download_gguf_file(model_id: str, file_path: str, target_path: str) -> bool:
"""Download a GGUF file from HuggingFace.
Args:
model_id: HuggingFace model ID
file_path: Path to the file within the repository
target_path: Local path to save the file
Returns:
bool: True if download was successful, False otherwise
"""
url = f"https://huggingface.co/{model_id}/resolve/main/{file_path}"
try:
logger.info(f"Downloading {url} to {target_path}")
# Ensure directory exists
os.makedirs(os.path.dirname(target_path), exist_ok=True)
headers = {}
token = get_hf_token()
if token:
headers["Authorization"] = f"Bearer {token}"
async with aiohttp.ClientSession() as session:
async with session.get(url, headers=headers) as response:
if response.status != 200:
if response.status in (401, 403):
return False # Auth error handled by caller
logger.error(f"Error downloading GGUF file: {response.status}")
return False
# Download with progress reporting
total_size = int(response.headers.get("Content-Length", 0))
chunk_size = 1024 * 1024 # 1MB chunks
downloaded = 0
# Track last time progress was reported
import time
last_progress_time = 0
last_percentage = -1
# Always log the start
logger.info("Download started: 0.0%")
with open(target_path, "wb") as f:
async for chunk in response.content.iter_chunked(chunk_size):
f.write(chunk)
downloaded += len(chunk)
if total_size:
current_time = time.time()
progress = downloaded / total_size * 100
current_percentage = int(progress)
# Log progress if 5+ seconds have passed or if we've hit a new percentage multiple of 25
if current_time - last_progress_time >= 5 or (current_percentage % 25 == 0 and current_percentage != last_percentage):
logger.info(f"Download progress: {progress:.1f}%")
last_progress_time = current_time
last_percentage = current_percentage
# Always log the completion
logger.info(f"Download completed: {target_path}")
return True
except Exception as e:
logger.error(f"Error downloading GGUF file: {e}")
return False
async def import_model_to_ollama(local_file_path: str, model_name: str) -> bool:
"""Import a GGUF file into Ollama.
Args:
local_file_path: Path to the downloaded GGUF file
model_name: Name to give the model in Ollama
Returns:
bool: True if import was successful, False otherwise
"""
try:
# Ensure Ollama bin exists
ollama_bin = shutil.which("ollama")
if not ollama_bin:
logger.error("Ollama binary not found")
return False
# Create a temporary Modelfile
with tempfile.NamedTemporaryFile(mode="w", suffix=".txt", delete=False) as f:
modelfile_path = f.name
f.write(f"FROM {os.path.abspath(local_file_path)}\n")
f.write('TEMPLATE "{.System}\\n\\n{.Prompt}"')
logger.info(f"Created temporary Modelfile at {modelfile_path}")
# Import the model using Ollama
logger.info(f"Importing model into Ollama as {model_name}")
process = await asyncio.create_subprocess_exec(
ollama_bin, "create", model_name, "-f", modelfile_path, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE
)
# Capture output
stdout, stderr = await process.communicate()
# Clean up temporary file
os.unlink(modelfile_path)
if process.returncode == 0:
logger.info(f"Successfully imported model as {model_name}")
return True
else:
logger.error(f"Failed to import model: {stderr.decode()}")
return False
except Exception as e:
logger.error(f"Error importing model to Ollama: {e}")
return False
async def get_best_gguf_file(gguf_files: List[Dict[str, Any]]) -> Optional[Dict[str, Any]]:
"""Select the best GGUF file from a list of files.
Prioritizes:
1. Smaller quantization (q4_K > q5_K > q8_0)
2. File size (prefers smaller files for same quantization level)
3. Avoid huge files unless necessary.
Args:
gguf_files: List of GGUF file objects
Returns:
The best GGUF file object or None if list is empty
"""
if not gguf_files:
return None
# Quantization priority (lower is better for typical use cases)
# Prioritize middle-range quantization for balance of quality and size
quant_priority = {
"q4_k": 1, # Best balance for most use cases
"q5_k": 2, # Good balance of quality and size
"q4_0": 3, # Good for typical use
"q4_1": 4, # Good for typical use
"q3_k": 5, # More compression, less quality
"q5_0": 6,
"q5_1": 7,
"q6_k": 8,
"q2_k": 9, # Lowest quality but smallest
"q8_0": 10, # High quality but larger
"f16": 20, # Full precision, very large
"f32": 30, # Full precision, extremely large
}
# Add a size penalty for very large files
MAX_PREFERRED_SIZE = 4 * 1024 * 1024 * 1024 # 4GB
# Extract quantization information
for file in gguf_files:
path = file.get("path", "").lower()
size = file.get("size", 0)
# Determine quantization level
quant_score = 100 # Default high value
for quant, priority in quant_priority.items():
if quant in path:
quant_score = priority
break
# Store the score and size in the file object for sorting
file["_quant_score"] = quant_score
file["_size"] = size
# First try to find models under the preferred size with good quantization
preferred_files = [f for f in gguf_files if f.get("_size", 0) <= MAX_PREFERRED_SIZE]
if preferred_files:
# Sort by quantization score (lower is better)
sorted_files = sorted(preferred_files, key=lambda x: x.get("_quant_score", 100))
else:
# If all files are large, sort by quantization score
sorted_files = sorted(gguf_files, key=lambda x: x.get("_quant_score", 100))
if sorted_files:
selected = sorted_files[0]
size_mb = selected.get("_size", 0) / (1024 * 1024)
logger.info(f"Selected GGUF file: {selected.get('path')} ({size_mb:.1f} MB)")
return selected
return None
async def download_best_gguf_for_model(model_id: str) -> Tuple[bool, str, Optional[str]]:
"""Download the best GGUF file for a HuggingFace model.
This is a pure HuggingFace operation that doesn't directly depend on Ollama.
Args:
model_id: HuggingFace model ID
Returns:
Tuple of (success, message, local_file_path)
Where local_file_path is the path to the downloaded file if successful, None otherwise
Raises:
HuggingFaceModelNotFoundError: If the model doesn't exist on HuggingFace
HuggingFaceAuthError: If authentication is required but not provided
HuggingFaceError: For other HuggingFace-related errors
"""
# Check if model exists
if not await check_model_exists(model_id):
error_msg = f"Model {model_id} not found on HuggingFace"
logger.error(error_msg)
raise HuggingFaceModelNotFoundError(error_msg)
# Find GGUF files
gguf_files = await find_gguf_files(model_id)
if not gguf_files:
error_msg = f"No GGUF files found for model {model_id}"
logger.error(error_msg)
raise HuggingFaceError(error_msg)
# Select best GGUF file
best_file = await get_best_gguf_file(gguf_files)
if not best_file:
error_msg = f"Could not select a suitable GGUF file for model {model_id}"
logger.error(error_msg)
raise HuggingFaceError(error_msg)
# Create a temporary directory for download
temp_dir = tempfile.mkdtemp()
try:
file_path = best_file.get("path")
file_name = os.path.basename(file_path)
local_file_path = os.path.join(temp_dir, file_name)
# Download the GGUF file
if not await download_gguf_file(model_id, file_path, local_file_path):
# Check if it's an auth error
token = get_hf_token()
if not token:
error_msg = f"Authentication required for model {model_id}. Please set the HUGGING_FACE_HUB_TOKEN environment variable."
logger.error(error_msg)
raise HuggingFaceAuthError(error_msg)
else:
error_msg = f"Failed to download GGUF file for model {model_id}"
logger.error(error_msg)
raise HuggingFaceError(error_msg)
logger.info(f"Successfully downloaded GGUF file to {local_file_path}")
return True, f"Successfully downloaded model {model_id}", local_file_path
except Exception as e:
# Clean up temp directory in case of error
shutil.rmtree(temp_dir, ignore_errors=True)
# Re-raise HuggingFace exceptions directly
if isinstance(e, (HuggingFaceModelNotFoundError, HuggingFaceAuthError, HuggingFaceError)):
raise
# For other exceptions, wrap in HuggingFaceError
logger.exception(f"Unexpected error downloading model {model_id}")
raise HuggingFaceError(f"Unexpected error: {str(e)}")
async def prepare_hf_model_for_ollama(model_id: str) -> Tuple[bool, str]:
"""Prepare a HuggingFace model for use with Ollama.
This function bridges HuggingFace and Ollama services.
Args:
model_id: HuggingFace model ID
Returns:
Tuple of (success, message_or_ollama_name)
Raises:
HuggingFaceModelNotFoundError: If the model doesn't exist on HuggingFace
HuggingFaceAuthError: If authentication is required but not provided
HuggingFaceError: For other HuggingFace-related errors
"""
# Create a sanitized model name for Ollama
ollama_name = f"hf-{model_id.replace('/', '-').lower()}"
try:
# Check if model is already imported in Ollama
if await is_model_available(ollama_name):
logger.info(f"Model {ollama_name} is already available in Ollama")
return True, ollama_name
# Download the best GGUF file
success, message, local_file_path = await download_best_gguf_for_model(model_id)
if not success or not local_file_path:
# Re-raise the specific error based on the message
if "not found" in message.lower():
raise HuggingFaceModelNotFoundError(message)
elif "authentication" in message.lower():
raise HuggingFaceAuthError(message)
else:
raise HuggingFaceError(message)
try:
# Import to Ollama
if not await import_model_to_ollama(local_file_path, ollama_name):
raise HuggingFaceError(f"Failed to import model {model_id} to Ollama")
logger.info(f"Successfully prepared HuggingFace model {model_id} as Ollama model {ollama_name}")
return True, ollama_name
finally:
# Clean up the temp directory containing the downloaded file
temp_dir = os.path.dirname(local_file_path)
shutil.rmtree(temp_dir, ignore_errors=True)
except (HuggingFaceModelNotFoundError, HuggingFaceAuthError, HuggingFaceError):
# Let specific exceptions propagate up
raise
except Exception as e:
logger.exception(f"Error preparing model {model_id} for Ollama")
raise HuggingFaceError(f"Error preparing model: {str(e)}")
async def ensure_hf_model_ready(model_id: str) -> Tuple[bool, str]:
"""Ensure a HuggingFace model is ready for use with Ollama.
This function bridges HuggingFace and Ollama services.
Args:
model_id: HuggingFace model ID
Returns:
Tuple of (success, ollama_model_name)
Raises:
HuggingFaceModelNotFoundError: If the model doesn't exist on HuggingFace
HuggingFaceAuthError: If authentication is required but not provided
HuggingFaceError: For other HuggingFace-related errors
"""
from starfish.llm.backend.ollama_adapter import (
OllamaConnectionError,
ensure_model_ready,
)
# First ensure Ollama is running
try:
if not await ensure_model_ready(""): # Just make sure Ollama is running
raise HuggingFaceError("Failed to start Ollama server")
# Prepare the HuggingFace model for Ollama
return await prepare_hf_model_for_ollama(model_id)
except OllamaConnectionError as e:
# Convert Ollama errors to HuggingFace errors for consistent error handling
logger.error(f"Ollama connection error: {e}")
raise HuggingFaceError(f"Ollama server error: {str(e)}")
async def delete_hf_model(model_id: str) -> bool:
"""Delete a HuggingFace model from Ollama.
This function bridges HuggingFace and Ollama services.
Args:
model_id: Either the HuggingFace model ID or the Ollama model name
Returns:
bool: True if deletion was successful
"""
# If this looks like a HF model ID, convert to Ollama name format
if "/" in model_id and not model_id.startswith("hf-"):
ollama_name = f"hf-{model_id.replace('/', '-').lower()}"
else:
ollama_name = model_id
return await delete_ollama_model(ollama_name)
|