Spaces:
Running
Running
File size: 15,945 Bytes
5301c48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 |
# Google Colab Version
[Open this notebook in Google Colab](https://colab.research.google.com/github/starfishdata/starfish/blob/main/examples/usecases/math_data_gen.ipynb)
# Strategy
#### Step 0: Topic Generation
**What:** Generate focused math topics (e.g., modular arithmetic, binomial coefficients).
**Why:** Ensures diverse domain coverage across AIME-style questions.
#### Step 1: Problem Generation
**What:** Generate an AIME-style math problem for each topic.
**Why:** Keeps problem structure realistic and solvable in 3β6 steps.
#### Step 3: Long CoT Generation
**What:** Use a large reasoning model to generate detailed reasoning.
**Why:** Captures rich logical steps for use in training or Mix Distillation.
#### Step 4: Python Code Generation + Verification + Execution
**What:** Convert CoT + problem to Python code, verify the Python code and generate feedback on it; regenerate and execute it, and compare result to final answer.
**Why:** Ensures strict correctness without relying on model judgment.
#### Step 5: Feedback and Rewrite (if failed for each)
**What:** If CoT fails verification, generate a revised version using feedback.
**Why:** Improves clarity and correctness while preserving reasoning structure.
**Note:** We'll be generating 4 short CoT for every Long CoT to ensure mixed distillation as per [this paper](https://arxiv.org/pdf/2502.12143). These steps will be added later as this pipeline is still a work in progress.
# Implementation
## Starfish pull from pip
```python
pip install starfish-core
```
## Other packages
```python
pip install openai-agents
```
```python
!pip install datasets
```
## Main
```python
import nest_asyncio
from starfish import data_factory, StructuredLLM
import os
from agents import Agent, Runner, function_tool, ModelSettings
from agents.agent_output import AgentOutputSchema
from pydantic import BaseModel
nest_asyncio.apply()
```
```python
model_name_used = 'openai/gpt-4.1-mini'
reasoning_model = 'o4-mini'
CONCURRENCY = 50
TASK_RUNNER_TIMEOUT = 500
class CoTSchema(BaseModel):
problem: str
topic: str
answer: str
reasoning: str
class CodeExecutorSchema(BaseModel):
verified: str
correct_answer: str
topic: str
problem: str
code: str
reasoning: str
class CodeGeneratorSchema(BaseModel):
generated_code: str
explanation: str
class CodeCritiqueSchema(BaseModel):
critique: str
alignment_issues: list[str]
edge_cases_missing: list[str]
complexity_assessment: str
class CodeRegeneratorSchema(BaseModel):
improved_code: str
improvements_made: list[str]
class FeedbackAndRewriteSchema(BaseModel):
topic: str
problem: str
reasoning: str
@data_factory(max_concurrency=CONCURRENCY)
async def generate_topic(num_records):
prompt = """
List unique math topics that are commonly tested on AIME (American Invitational Mathematics Examination) problems.
Focus on areas that appear frequently in recent years, especially 2020β2025.
Include both core topics and more niche subtopics.
"""
model = StructuredLLM(
model_name=model_name_used,
prompt=prompt,
output_schema=[{"name": "topic", "type": "str", "required": True}]
)
return (await model.run(num_records=num_records)).data
@data_factory(max_concurrency=CONCURRENCY)
async def generate_problem(topic):
prompt = """
Create a AIME-style math competition problem in the topic of {{topic}}.
Requirements:
1. The problem should be original and adhere to AIME difficulty (appropriate for high school students aiming for USAMO qualification).
2. It must be solvable in 3 to 6 logical steps, without requiring computational brute force.
3. Emphasize creativity, clean setup, and an elegant path to the solution.
4. Use clear and concise language. No extraneous details.
5. Do not include the answer or any solution steps.
6. Return only the problem text.
"""
model = StructuredLLM(
model_name=model_name_used,
prompt=prompt,
output_schema=[{"name": "problem", "type": "str", "required": True}, {"name": "topic", "type": "str", "required": True}]
)
return (await model.run(topic=topic)).data
@data_factory(max_concurrency=CONCURRENCY, task_runner_timeout=TASK_RUNNER_TIMEOUT)
async def answer_long_cot(problem, topic):
prompt = f"""Solve the following problem using a detailed, step-by-step chain of thought.
Carefully explain each step of your reasoning, include any necessary formulas or theorems,
and conclude clearly with your final result.
Problem: {problem}
Final Answer:"""
my_agent = Agent(
name="Problem solver",
output_type=CoTSchema,
model=reasoning_model,
# model_settings=ModelSettings(reasoning={"summary": "detailed"}),
)
sample_run = await Runner.run(
my_agent,
input=prompt
)
print(sample_run)
output = sample_run.final_output.model_dump()
output["cot_type"] = "long"
output["topic"] = topic
return [output]
@function_tool
def execute_python_code(code: str):
local_vars = {}
exec(code, {}, local_vars)
verified = local_vars.get("verified", None)
correct_solution = local_vars.get("correct_solution", None)
return {"verified": bool(verified), "correct_solution": correct_solution}
@data_factory(max_concurrency=CONCURRENCY, task_runner_timeout=TASK_RUNNER_TIMEOUT)
async def data_factory_execute_cot_as_code(answer, topic, problem, cot_type, reasoning):
return await execute_cot_as_code(answer, topic, problem, cot_type, reasoning)
async def execute_cot_as_code(answer, topic, problem, cot_type, reasoning):
# Step 1: Generate initial code from problem and CoT
initial_code_prompt = f"""
You are an expert Python developer tasked with converting an AIME-style math problem and its solution reasoning into executable Python code.
Problem:
{problem}
Chain of Thought Solution:
{reasoning}
Write complete, correct Python code that implements this solution. The code should:
- Follow the exact reasoning steps shown in the Chain of Thought
- Use appropriate Python libraries (math, itertools, etc.) if needed
- Include comments explaining key steps
- Be mathematically rigorous without shortcuts
"""
code_generator = Agent(
name="Code Generator",
output_type=CodeGeneratorSchema,
model=reasoning_model
)
initial_code_run = await Runner.run(
code_generator,
input=initial_code_prompt
)
initial_code = initial_code_run.final_output.generated_code
critique_prompt = f"""
Analyze the following Python code that solves an AIME math problem.
Evaluate it for:
1. Alignment with the original chain of thought reasoning
2. Mathematical rigor and absence of shortcuts
3. Missing edge cases or assumptions
4. Appropriate complexity level for an AIME problem
Problem:
{problem}
Original Chain of Thought:
{reasoning}
Generated Code:
{initial_code}
"""
code_critic = Agent(
name="Code Critic",
output_type=CodeCritiqueSchema,
model=reasoning_model
)
critique_run = await Runner.run(
code_critic,
input=critique_prompt
)
critique = critique_run.final_output
# Step 3: Regenerate improved code based on critique
regenerate_prompt = f"""
Improve the following Python code based on the provided critique.
Generate a new version that addresses all identified issues while maintaining mathematical rigor.
Original Problem:
{problem}
Original Chain of Thought:
{reasoning}
Original Code:
{initial_code}
Critique:
{critique.critique}
Missing Edge Cases:
{critique.edge_cases_missing}
Alignment Issues:
{critique.alignment_issues}
Generate improved code that:
1. Addresses all critique points
2. Maintains alignment with the chain of thought
3. Handles identified edge cases
4. Maintains appropriate mathematical rigor
"""
code_regenerator = Agent(
name="Code Regenerator",
output_type=CodeRegeneratorSchema,
model=reasoning_model
)
regenerate_run = await Runner.run(
code_regenerator,
input=regenerate_prompt
)
final_code = regenerate_run.final_output.improved_code
execute_prompt = f"""
You are an expert Python developer tasked with converting AIME-style math problems into complete, correct, and executable Python code.
Requirements:
- Use the provided improved code implementation
- Ensure the final result is assigned to `correct_solution`
- Compare `correct_solution` to the expected value `{answer}` and set `verified = True` if they match, else `False`
Problem:
{problem}
Improved Implementation:
{final_code}
"""
my_agent = Agent(
name="Tool caller",
output_type=CodeExecutorSchema,
tools=[execute_python_code],
model=reasoning_model,
model_settings=ModelSettings(tool_choice="required"),
)
sample_run = await Runner.run(
my_agent,
input=execute_prompt
)
output = sample_run.final_output.model_dump()
output['problem'] = problem
output['cot_type'] = cot_type
output["topic"] = topic
output["reasoning"] = reasoning
return [output]
@data_factory(max_concurrency=CONCURRENCY, task_runner_timeout=TASK_RUNNER_TIMEOUT)
async def feedback_and_rewrite(topic, problem, reasoning, verified, correct_answer, cot_type, code):
prompt = f"""
Review the problem and the current solution attempt below.
First, evaluate whether the reasoning in the solution leads to the correct answer. If it does not, identify any mistakes or incorrect steps. Then, rewrite the solution so that the logic is accurate and clearly leads to the correct, verified answer.
Your rewritten solution should maintain a step-by-step explanation and ensure the final result matches the Correct Answer.
Problem: {problem}
Current Reasoning: {reasoning}
Verified Correct Answer: {correct_answer}
"""
my_agent = Agent(
name="Feedback and Rewrite",
output_type=FeedbackAndRewriteSchema,
model=reasoning_model,
)
sample_run = await Runner.run(
my_agent,
input=prompt
)
output = sample_run.final_output.model_dump()
feedbacked_output = await execute_cot_as_code(
topic=topic,
problem=problem,
answer=correct_answer,
cot_type=cot_type,
reasoning=output["reasoning"],
)
return feedbacked_output
```
# Playground
```python
topics = generate_topic.run(num_records=110)
```
```python
problems = generate_problem.run(topics)
```
```python
reasoning = answer_long_cot.run(problems)
```
```python
code_execution = data_factory_execute_cot_as_code.run(reasoning)
```
```python
all_re_written_cots = []
unverified_entries = [entry for entry in code_execution if entry.get("verified") == "False"]
verified_entries = [entry for entry in code_execution if entry.get("verified") == "True"]
if unverified_entries:
# Run feedback and rewrite on the current batch of unverified entries
rewritten_batch = feedback_and_rewrite.run(unverified_entries)
# Collect verified rewrites
verified_batch = [rewritten for rewritten in rewritten_batch if rewritten.get("verified") == "True"]
all_re_written_cots.extend(verified_batch)
# Remove verified entries from the current unverified list
unverified_entries = [rewritten for rewritten in rewritten_batch if rewritten.get("verified") == "False"]
verified_entries = verified_entries + all_re_written_cots
print(verified_entries)
```
### Step 0: Topic Generation
- **Description:** Generate focused math topics.
- **Code:**
```python
@data_factory(max_concurrency=CONCURRENCY)
async def generate_topic(num_records):
prompt = """
List unique math topics that are commonly tested on AIME (American Invitational Mathematics Examination) problems.
Focus on areas that appear frequently in recent years, especially 2020β2025.
Include both core topics and more niche subtopics.
"""
model = StructuredLLM(
model_name=model_name_used,
prompt=prompt,
output_schema=[{"name": "topic", "type": "str", "required": True}]
)
return (await model.run(num_records=num_records)).data
```
### Step 1: Problem Generation
- **Description:** Generate an AIME-style math problem.
- **Code:**
```python
@data_factory(max_concurrency=CONCURRENCY)
async def generate_problem(topic):
prompt = """
Create a AIME-style math competition problem in the topic of {{topic}}.
"""
model = StructuredLLM(
model_name=model_name_used,
prompt=prompt,
output_schema=[{"name": "problem", "type": "str", "required": True}, {"name": "topic", "type": "str", "required": True}]
)
return (await model.run(topic=topic)).data
```
### Step 3: Long CoT Generation
- **Description:** Generate detailed reasoning using a reasoning model.
- **Code:**
```python
@data_factory(max_concurrency=CONCURRENCY, task_runner_timeout=TASK_RUNNER_TIMEOUT)
async def answer_long_cot(problem, topic):
prompt = f"""Solve the following problem using a detailed, step-by-step chain of thought.
"""
my_agent = Agent(
name="Problem solver",
output_type=CoTSchema,
model=reasoning_model,
)
sample_run = await Runner.run(
my_agent,
input=prompt
)
output = sample_run.final_output.model_dump()
output["cot_type"] = "long"
output["topic"] = topic
return [output]
```
### Step 4: Python Code Generation, Verification, Execution
- **Description:** Convert CoT + problem to Python code, verify, and execute.
- **Code:**
```python
async def execute_cot_as_code(answer, topic, problem, cot_type, reasoning):
initial_code_prompt = f"""
You are an expert Python developer tasked with converting an AIME-style math problem and its solution reasoning into executable Python code.
"""
code_generator = Agent(
name="Code Generator",
output_type=CodeGeneratorSchema,
model=reasoning_model
)
initial_code_run = await Runner.run(
code_generator,
input=initial_code_prompt
)
final_code = regenerate_run.final_output.improved_code
execute_prompt = f"""
You are an expert Python developer tasked with converting AIME-style math problems into complete, correct, and executable Python code.
"""
my_agent = Agent(
name="Tool caller",
output_type=CodeExecutorSchema,
tools=[execute_python_code],
model=reasoning_model,
)
sample_run = await Runner.run(
my_agent,
input=execute_prompt
)
output = sample_run.final_output.model_dump()
output['problem'] = problem
output['cot_type'] = cot_type
output["topic"] = topic
output["reasoning"] = reasoning
return [output]
```
### Step 5: Feedback and Rewrite
- **Description:** Generate a revised version if CoT fails verification.
- **Code:**
```python
@data_factory(max_concurrency=CONCURRENCY, task_runner_timeout=TASK_RUNNER_TIMEOUT)
async def feedback_and_rewrite(topic, problem, reasoning, verified, correct_answer, cot_type, code):
prompt = f"""
Review the problem and the current solution attempt below.
"""
my_agent = Agent(
name="Feedback and Rewrite",
output_type=FeedbackAndRewriteSchema,
model=reasoning_model,
)
sample_run = await Runner.run(
my_agent,
input=prompt
)
output = sample_run.final_output.model_dump()
feedbacked_output = await execute_cot_as_code(
topic=topic,
problem=problem,
answer=correct_answer,
cot_type=cot_type,
reasoning=output["reasoning"],
)
return feedbacked_output
``` |