Delete convert_repo_to_safetensors.py
Browse files- convert_repo_to_safetensors.py +0 -364
 
    	
        convert_repo_to_safetensors.py
    DELETED
    
    | 
         @@ -1,364 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            # Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint.
         
     | 
| 2 | 
         
            -
            # *Only* converts the UNet, VAE, and Text Encoder.
         
     | 
| 3 | 
         
            -
            # Does not convert optimizer state or any other thing.
         
     | 
| 4 | 
         
            -
             
     | 
| 5 | 
         
            -
            import argparse
         
     | 
| 6 | 
         
            -
            import os.path as osp
         
     | 
| 7 | 
         
            -
            import re
         
     | 
| 8 | 
         
            -
             
     | 
| 9 | 
         
            -
            import torch
         
     | 
| 10 | 
         
            -
            from safetensors.torch import load_file, save_file
         
     | 
| 11 | 
         
            -
             
     | 
| 12 | 
         
            -
             
     | 
| 13 | 
         
            -
            # =================#
         
     | 
| 14 | 
         
            -
            # UNet Conversion #
         
     | 
| 15 | 
         
            -
            # =================#
         
     | 
| 16 | 
         
            -
             
     | 
| 17 | 
         
            -
            unet_conversion_map = [
         
     | 
| 18 | 
         
            -
                # (stable-diffusion, HF Diffusers)
         
     | 
| 19 | 
         
            -
                ("time_embed.0.weight", "time_embedding.linear_1.weight"),
         
     | 
| 20 | 
         
            -
                ("time_embed.0.bias", "time_embedding.linear_1.bias"),
         
     | 
| 21 | 
         
            -
                ("time_embed.2.weight", "time_embedding.linear_2.weight"),
         
     | 
| 22 | 
         
            -
                ("time_embed.2.bias", "time_embedding.linear_2.bias"),
         
     | 
| 23 | 
         
            -
                ("input_blocks.0.0.weight", "conv_in.weight"),
         
     | 
| 24 | 
         
            -
                ("input_blocks.0.0.bias", "conv_in.bias"),
         
     | 
| 25 | 
         
            -
                ("out.0.weight", "conv_norm_out.weight"),
         
     | 
| 26 | 
         
            -
                ("out.0.bias", "conv_norm_out.bias"),
         
     | 
| 27 | 
         
            -
                ("out.2.weight", "conv_out.weight"),
         
     | 
| 28 | 
         
            -
                ("out.2.bias", "conv_out.bias"),
         
     | 
| 29 | 
         
            -
                # the following are for sdxl
         
     | 
| 30 | 
         
            -
                ("label_emb.0.0.weight", "add_embedding.linear_1.weight"),
         
     | 
| 31 | 
         
            -
                ("label_emb.0.0.bias", "add_embedding.linear_1.bias"),
         
     | 
| 32 | 
         
            -
                ("label_emb.0.2.weight", "add_embedding.linear_2.weight"),
         
     | 
| 33 | 
         
            -
                ("label_emb.0.2.bias", "add_embedding.linear_2.bias"),
         
     | 
| 34 | 
         
            -
            ]
         
     | 
| 35 | 
         
            -
             
     | 
| 36 | 
         
            -
            unet_conversion_map_resnet = [
         
     | 
| 37 | 
         
            -
                # (stable-diffusion, HF Diffusers)
         
     | 
| 38 | 
         
            -
                ("in_layers.0", "norm1"),
         
     | 
| 39 | 
         
            -
                ("in_layers.2", "conv1"),
         
     | 
| 40 | 
         
            -
                ("out_layers.0", "norm2"),
         
     | 
| 41 | 
         
            -
                ("out_layers.3", "conv2"),
         
     | 
| 42 | 
         
            -
                ("emb_layers.1", "time_emb_proj"),
         
     | 
| 43 | 
         
            -
                ("skip_connection", "conv_shortcut"),
         
     | 
| 44 | 
         
            -
            ]
         
     | 
| 45 | 
         
            -
             
     | 
| 46 | 
         
            -
            unet_conversion_map_layer = []
         
     | 
| 47 | 
         
            -
            # hardcoded number of downblocks and resnets/attentions...
         
     | 
| 48 | 
         
            -
            # would need smarter logic for other networks.
         
     | 
| 49 | 
         
            -
            for i in range(3):
         
     | 
| 50 | 
         
            -
                # loop over downblocks/upblocks
         
     | 
| 51 | 
         
            -
             
     | 
| 52 | 
         
            -
                for j in range(2):
         
     | 
| 53 | 
         
            -
                    # loop over resnets/attentions for downblocks
         
     | 
| 54 | 
         
            -
                    hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
         
     | 
| 55 | 
         
            -
                    sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
         
     | 
| 56 | 
         
            -
                    unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
         
     | 
| 57 | 
         
            -
             
     | 
| 58 | 
         
            -
                    if i > 0:
         
     | 
| 59 | 
         
            -
                        hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
         
     | 
| 60 | 
         
            -
                        sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
         
     | 
| 61 | 
         
            -
                        unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
         
     | 
| 62 | 
         
            -
             
     | 
| 63 | 
         
            -
                for j in range(4):
         
     | 
| 64 | 
         
            -
                    # loop over resnets/attentions for upblocks
         
     | 
| 65 | 
         
            -
                    hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
         
     | 
| 66 | 
         
            -
                    sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
         
     | 
| 67 | 
         
            -
                    unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
         
     | 
| 68 | 
         
            -
             
     | 
| 69 | 
         
            -
                    if i < 2:
         
     | 
| 70 | 
         
            -
                        # no attention layers in up_blocks.0
         
     | 
| 71 | 
         
            -
                        hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
         
     | 
| 72 | 
         
            -
                        sd_up_atn_prefix = f"output_blocks.{3 * i + j}.1."
         
     | 
| 73 | 
         
            -
                        unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
         
     | 
| 74 | 
         
            -
             
     | 
| 75 | 
         
            -
                if i < 3:
         
     | 
| 76 | 
         
            -
                    # no downsample in down_blocks.3
         
     | 
| 77 | 
         
            -
                    hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
         
     | 
| 78 | 
         
            -
                    sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
         
     | 
| 79 | 
         
            -
                    unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
         
     | 
| 80 | 
         
            -
             
     | 
| 81 | 
         
            -
                    # no upsample in up_blocks.3
         
     | 
| 82 | 
         
            -
                    hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
         
     | 
| 83 | 
         
            -
                    sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}."
         
     | 
| 84 | 
         
            -
                    unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
         
     | 
| 85 | 
         
            -
            unet_conversion_map_layer.append(("output_blocks.2.2.conv.", "output_blocks.2.1.conv."))
         
     | 
| 86 | 
         
            -
             
     | 
| 87 | 
         
            -
            hf_mid_atn_prefix = "mid_block.attentions.0."
         
     | 
| 88 | 
         
            -
            sd_mid_atn_prefix = "middle_block.1."
         
     | 
| 89 | 
         
            -
            unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
         
     | 
| 90 | 
         
            -
            for j in range(2):
         
     | 
| 91 | 
         
            -
                hf_mid_res_prefix = f"mid_block.resnets.{j}."
         
     | 
| 92 | 
         
            -
                sd_mid_res_prefix = f"middle_block.{2*j}."
         
     | 
| 93 | 
         
            -
                unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
         
     | 
| 94 | 
         
            -
             
     | 
| 95 | 
         
            -
             
     | 
| 96 | 
         
            -
            def convert_unet_state_dict(unet_state_dict):
         
     | 
| 97 | 
         
            -
                # buyer beware: this is a *brittle* function,
         
     | 
| 98 | 
         
            -
                # and correct output requires that all of these pieces interact in
         
     | 
| 99 | 
         
            -
                # the exact order in which I have arranged them.
         
     | 
| 100 | 
         
            -
                mapping = {k: k for k in unet_state_dict.keys()}
         
     | 
| 101 | 
         
            -
                for sd_name, hf_name in unet_conversion_map:
         
     | 
| 102 | 
         
            -
                    mapping[hf_name] = sd_name
         
     | 
| 103 | 
         
            -
                for k, v in mapping.items():
         
     | 
| 104 | 
         
            -
                    if "resnets" in k:
         
     | 
| 105 | 
         
            -
                        for sd_part, hf_part in unet_conversion_map_resnet:
         
     | 
| 106 | 
         
            -
                            v = v.replace(hf_part, sd_part)
         
     | 
| 107 | 
         
            -
                        mapping[k] = v
         
     | 
| 108 | 
         
            -
                for k, v in mapping.items():
         
     | 
| 109 | 
         
            -
                    for sd_part, hf_part in unet_conversion_map_layer:
         
     | 
| 110 | 
         
            -
                        v = v.replace(hf_part, sd_part)
         
     | 
| 111 | 
         
            -
                    mapping[k] = v
         
     | 
| 112 | 
         
            -
                new_state_dict = {sd_name: unet_state_dict[hf_name] for hf_name, sd_name in mapping.items()}
         
     | 
| 113 | 
         
            -
                return new_state_dict
         
     | 
| 114 | 
         
            -
             
     | 
| 115 | 
         
            -
             
     | 
| 116 | 
         
            -
            # ================#
         
     | 
| 117 | 
         
            -
            # VAE Conversion #
         
     | 
| 118 | 
         
            -
            # ================#
         
     | 
| 119 | 
         
            -
             
     | 
| 120 | 
         
            -
            vae_conversion_map = [
         
     | 
| 121 | 
         
            -
                # (stable-diffusion, HF Diffusers)
         
     | 
| 122 | 
         
            -
                ("nin_shortcut", "conv_shortcut"),
         
     | 
| 123 | 
         
            -
                ("norm_out", "conv_norm_out"),
         
     | 
| 124 | 
         
            -
                ("mid.attn_1.", "mid_block.attentions.0."),
         
     | 
| 125 | 
         
            -
            ]
         
     | 
| 126 | 
         
            -
             
     | 
| 127 | 
         
            -
            for i in range(4):
         
     | 
| 128 | 
         
            -
                # down_blocks have two resnets
         
     | 
| 129 | 
         
            -
                for j in range(2):
         
     | 
| 130 | 
         
            -
                    hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
         
     | 
| 131 | 
         
            -
                    sd_down_prefix = f"encoder.down.{i}.block.{j}."
         
     | 
| 132 | 
         
            -
                    vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
         
     | 
| 133 | 
         
            -
             
     | 
| 134 | 
         
            -
                if i < 3:
         
     | 
| 135 | 
         
            -
                    hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
         
     | 
| 136 | 
         
            -
                    sd_downsample_prefix = f"down.{i}.downsample."
         
     | 
| 137 | 
         
            -
                    vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
         
     | 
| 138 | 
         
            -
             
     | 
| 139 | 
         
            -
                    hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
         
     | 
| 140 | 
         
            -
                    sd_upsample_prefix = f"up.{3-i}.upsample."
         
     | 
| 141 | 
         
            -
                    vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
         
     | 
| 142 | 
         
            -
             
     | 
| 143 | 
         
            -
                # up_blocks have three resnets
         
     | 
| 144 | 
         
            -
                # also, up blocks in hf are numbered in reverse from sd
         
     | 
| 145 | 
         
            -
                for j in range(3):
         
     | 
| 146 | 
         
            -
                    hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
         
     | 
| 147 | 
         
            -
                    sd_up_prefix = f"decoder.up.{3-i}.block.{j}."
         
     | 
| 148 | 
         
            -
                    vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
         
     | 
| 149 | 
         
            -
             
     | 
| 150 | 
         
            -
            # this part accounts for mid blocks in both the encoder and the decoder
         
     | 
| 151 | 
         
            -
            for i in range(2):
         
     | 
| 152 | 
         
            -
                hf_mid_res_prefix = f"mid_block.resnets.{i}."
         
     | 
| 153 | 
         
            -
                sd_mid_res_prefix = f"mid.block_{i+1}."
         
     | 
| 154 | 
         
            -
                vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
         
     | 
| 155 | 
         
            -
             
     | 
| 156 | 
         
            -
             
     | 
| 157 | 
         
            -
            vae_conversion_map_attn = [
         
     | 
| 158 | 
         
            -
                # (stable-diffusion, HF Diffusers)
         
     | 
| 159 | 
         
            -
                ("norm.", "group_norm."),
         
     | 
| 160 | 
         
            -
                # the following are for SDXL
         
     | 
| 161 | 
         
            -
                ("q.", "to_q."),
         
     | 
| 162 | 
         
            -
                ("k.", "to_k."),
         
     | 
| 163 | 
         
            -
                ("v.", "to_v."),
         
     | 
| 164 | 
         
            -
                ("proj_out.", "to_out.0."),
         
     | 
| 165 | 
         
            -
            ]
         
     | 
| 166 | 
         
            -
             
     | 
| 167 | 
         
            -
             
     | 
| 168 | 
         
            -
            def reshape_weight_for_sd(w):
         
     | 
| 169 | 
         
            -
                # convert HF linear weights to SD conv2d weights
         
     | 
| 170 | 
         
            -
                if not w.ndim == 1:
         
     | 
| 171 | 
         
            -
                    return w.reshape(*w.shape, 1, 1)
         
     | 
| 172 | 
         
            -
                else:
         
     | 
| 173 | 
         
            -
                    return w
         
     | 
| 174 | 
         
            -
             
     | 
| 175 | 
         
            -
             
     | 
| 176 | 
         
            -
            def convert_vae_state_dict(vae_state_dict):
         
     | 
| 177 | 
         
            -
                mapping = {k: k for k in vae_state_dict.keys()}
         
     | 
| 178 | 
         
            -
                for k, v in mapping.items():
         
     | 
| 179 | 
         
            -
                    for sd_part, hf_part in vae_conversion_map:
         
     | 
| 180 | 
         
            -
                        v = v.replace(hf_part, sd_part)
         
     | 
| 181 | 
         
            -
                    mapping[k] = v
         
     | 
| 182 | 
         
            -
                for k, v in mapping.items():
         
     | 
| 183 | 
         
            -
                    if "attentions" in k:
         
     | 
| 184 | 
         
            -
                        for sd_part, hf_part in vae_conversion_map_attn:
         
     | 
| 185 | 
         
            -
                            v = v.replace(hf_part, sd_part)
         
     | 
| 186 | 
         
            -
                        mapping[k] = v
         
     | 
| 187 | 
         
            -
                new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
         
     | 
| 188 | 
         
            -
                weights_to_convert = ["q", "k", "v", "proj_out"]
         
     | 
| 189 | 
         
            -
                for k, v in new_state_dict.items():
         
     | 
| 190 | 
         
            -
                    for weight_name in weights_to_convert:
         
     | 
| 191 | 
         
            -
                        if f"mid.attn_1.{weight_name}.weight" in k:
         
     | 
| 192 | 
         
            -
                            print(f"Reshaping {k} for SD format")
         
     | 
| 193 | 
         
            -
                            new_state_dict[k] = reshape_weight_for_sd(v)
         
     | 
| 194 | 
         
            -
                return new_state_dict
         
     | 
| 195 | 
         
            -
             
     | 
| 196 | 
         
            -
             
     | 
| 197 | 
         
            -
            # =========================#
         
     | 
| 198 | 
         
            -
            # Text Encoder Conversion #
         
     | 
| 199 | 
         
            -
            # =========================#
         
     | 
| 200 | 
         
            -
             
     | 
| 201 | 
         
            -
             
     | 
| 202 | 
         
            -
            textenc_conversion_lst = [
         
     | 
| 203 | 
         
            -
                # (stable-diffusion, HF Diffusers)
         
     | 
| 204 | 
         
            -
                ("transformer.resblocks.", "text_model.encoder.layers."),
         
     | 
| 205 | 
         
            -
                ("ln_1", "layer_norm1"),
         
     | 
| 206 | 
         
            -
                ("ln_2", "layer_norm2"),
         
     | 
| 207 | 
         
            -
                (".c_fc.", ".fc1."),
         
     | 
| 208 | 
         
            -
                (".c_proj.", ".fc2."),
         
     | 
| 209 | 
         
            -
                (".attn", ".self_attn"),
         
     | 
| 210 | 
         
            -
                ("ln_final.", "text_model.final_layer_norm."),
         
     | 
| 211 | 
         
            -
                ("token_embedding.weight", "text_model.embeddings.token_embedding.weight"),
         
     | 
| 212 | 
         
            -
                ("positional_embedding", "text_model.embeddings.position_embedding.weight"),
         
     | 
| 213 | 
         
            -
            ]
         
     | 
| 214 | 
         
            -
            protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
         
     | 
| 215 | 
         
            -
            textenc_pattern = re.compile("|".join(protected.keys()))
         
     | 
| 216 | 
         
            -
             
     | 
| 217 | 
         
            -
            # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
         
     | 
| 218 | 
         
            -
            code2idx = {"q": 0, "k": 1, "v": 2}
         
     | 
| 219 | 
         
            -
             
     | 
| 220 | 
         
            -
             
     | 
| 221 | 
         
            -
            def convert_openclip_text_enc_state_dict(text_enc_dict):
         
     | 
| 222 | 
         
            -
                new_state_dict = {}
         
     | 
| 223 | 
         
            -
                capture_qkv_weight = {}
         
     | 
| 224 | 
         
            -
                capture_qkv_bias = {}
         
     | 
| 225 | 
         
            -
                for k, v in text_enc_dict.items():
         
     | 
| 226 | 
         
            -
                    if (
         
     | 
| 227 | 
         
            -
                        k.endswith(".self_attn.q_proj.weight")
         
     | 
| 228 | 
         
            -
                        or k.endswith(".self_attn.k_proj.weight")
         
     | 
| 229 | 
         
            -
                        or k.endswith(".self_attn.v_proj.weight")
         
     | 
| 230 | 
         
            -
                    ):
         
     | 
| 231 | 
         
            -
                        k_pre = k[: -len(".q_proj.weight")]
         
     | 
| 232 | 
         
            -
                        k_code = k[-len("q_proj.weight")]
         
     | 
| 233 | 
         
            -
                        if k_pre not in capture_qkv_weight:
         
     | 
| 234 | 
         
            -
                            capture_qkv_weight[k_pre] = [None, None, None]
         
     | 
| 235 | 
         
            -
                        capture_qkv_weight[k_pre][code2idx[k_code]] = v
         
     | 
| 236 | 
         
            -
                        continue
         
     | 
| 237 | 
         
            -
             
     | 
| 238 | 
         
            -
                    if (
         
     | 
| 239 | 
         
            -
                        k.endswith(".self_attn.q_proj.bias")
         
     | 
| 240 | 
         
            -
                        or k.endswith(".self_attn.k_proj.bias")
         
     | 
| 241 | 
         
            -
                        or k.endswith(".self_attn.v_proj.bias")
         
     | 
| 242 | 
         
            -
                    ):
         
     | 
| 243 | 
         
            -
                        k_pre = k[: -len(".q_proj.bias")]
         
     | 
| 244 | 
         
            -
                        k_code = k[-len("q_proj.bias")]
         
     | 
| 245 | 
         
            -
                        if k_pre not in capture_qkv_bias:
         
     | 
| 246 | 
         
            -
                            capture_qkv_bias[k_pre] = [None, None, None]
         
     | 
| 247 | 
         
            -
                        capture_qkv_bias[k_pre][code2idx[k_code]] = v
         
     | 
| 248 | 
         
            -
                        continue
         
     | 
| 249 | 
         
            -
             
     | 
| 250 | 
         
            -
                    relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
         
     | 
| 251 | 
         
            -
                    new_state_dict[relabelled_key] = v
         
     | 
| 252 | 
         
            -
             
     | 
| 253 | 
         
            -
                for k_pre, tensors in capture_qkv_weight.items():
         
     | 
| 254 | 
         
            -
                    if None in tensors:
         
     | 
| 255 | 
         
            -
                        raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
         
     | 
| 256 | 
         
            -
                    relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
         
     | 
| 257 | 
         
            -
                    new_state_dict[relabelled_key + ".in_proj_weight"] = torch.cat(tensors)
         
     | 
| 258 | 
         
            -
             
     | 
| 259 | 
         
            -
                for k_pre, tensors in capture_qkv_bias.items():
         
     | 
| 260 | 
         
            -
                    if None in tensors:
         
     | 
| 261 | 
         
            -
                        raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
         
     | 
| 262 | 
         
            -
                    relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
         
     | 
| 263 | 
         
            -
                    new_state_dict[relabelled_key + ".in_proj_bias"] = torch.cat(tensors)
         
     | 
| 264 | 
         
            -
             
     | 
| 265 | 
         
            -
                return new_state_dict
         
     | 
| 266 | 
         
            -
             
     | 
| 267 | 
         
            -
             
     | 
| 268 | 
         
            -
            def convert_openai_text_enc_state_dict(text_enc_dict):
         
     | 
| 269 | 
         
            -
                return text_enc_dict
         
     | 
| 270 | 
         
            -
             
     | 
| 271 | 
         
            -
             
     | 
| 272 | 
         
            -
            def convert_diffusers_to_safetensors(model_path, checkpoint_path, dtype="fp16"):
         
     | 
| 273 | 
         
            -
                # Path for safetensors
         
     | 
| 274 | 
         
            -
                unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.safetensors")
         
     | 
| 275 | 
         
            -
                vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.safetensors")
         
     | 
| 276 | 
         
            -
                text_enc_path = osp.join(model_path, "text_encoder", "model.safetensors")
         
     | 
| 277 | 
         
            -
                text_enc_2_path = osp.join(model_path, "text_encoder_2", "model.safetensors")
         
     | 
| 278 | 
         
            -
             
     | 
| 279 | 
         
            -
                # Load models from safetensors if it exists, if it doesn't pytorch
         
     | 
| 280 | 
         
            -
                if osp.exists(unet_path):
         
     | 
| 281 | 
         
            -
                    unet_state_dict = load_file(unet_path, device="cpu")
         
     | 
| 282 | 
         
            -
                else:
         
     | 
| 283 | 
         
            -
                    unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin")
         
     | 
| 284 | 
         
            -
                    unet_state_dict = torch.load(unet_path, map_location="cpu")
         
     | 
| 285 | 
         
            -
             
     | 
| 286 | 
         
            -
                if osp.exists(vae_path):
         
     | 
| 287 | 
         
            -
                    vae_state_dict = load_file(vae_path, device="cpu")
         
     | 
| 288 | 
         
            -
                else:
         
     | 
| 289 | 
         
            -
                    vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin")
         
     | 
| 290 | 
         
            -
                    vae_state_dict = torch.load(vae_path, map_location="cpu")
         
     | 
| 291 | 
         
            -
             
     | 
| 292 | 
         
            -
                if osp.exists(text_enc_path):
         
     | 
| 293 | 
         
            -
                    text_enc_dict = load_file(text_enc_path, device="cpu")
         
     | 
| 294 | 
         
            -
                else:
         
     | 
| 295 | 
         
            -
                    text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin")
         
     | 
| 296 | 
         
            -
                    text_enc_dict = torch.load(text_enc_path, map_location="cpu")
         
     | 
| 297 | 
         
            -
             
     | 
| 298 | 
         
            -
                if osp.exists(text_enc_2_path):
         
     | 
| 299 | 
         
            -
                    text_enc_2_dict = load_file(text_enc_2_path, device="cpu")
         
     | 
| 300 | 
         
            -
                else:
         
     | 
| 301 | 
         
            -
                    text_enc_2_path = osp.join(model_path, "text_encoder_2", "pytorch_model.bin")
         
     | 
| 302 | 
         
            -
                    text_enc_2_dict = torch.load(text_enc_2_path, map_location="cpu")
         
     | 
| 303 | 
         
            -
             
     | 
| 304 | 
         
            -
                # Convert the UNet model
         
     | 
| 305 | 
         
            -
                unet_state_dict = convert_unet_state_dict(unet_state_dict)
         
     | 
| 306 | 
         
            -
                unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
         
     | 
| 307 | 
         
            -
             
     | 
| 308 | 
         
            -
                # Convert the VAE model
         
     | 
| 309 | 
         
            -
                vae_state_dict = convert_vae_state_dict(vae_state_dict)
         
     | 
| 310 | 
         
            -
                vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
         
     | 
| 311 | 
         
            -
             
     | 
| 312 | 
         
            -
                # Convert text encoder 1
         
     | 
| 313 | 
         
            -
                text_enc_dict = convert_openai_text_enc_state_dict(text_enc_dict)
         
     | 
| 314 | 
         
            -
                text_enc_dict = {"conditioner.embedders.0.transformer." + k: v for k, v in text_enc_dict.items()}
         
     | 
| 315 | 
         
            -
             
     | 
| 316 | 
         
            -
                # Convert text encoder 2
         
     | 
| 317 | 
         
            -
                text_enc_2_dict = convert_openclip_text_enc_state_dict(text_enc_2_dict)
         
     | 
| 318 | 
         
            -
                text_enc_2_dict = {"conditioner.embedders.1.model." + k: v for k, v in text_enc_2_dict.items()}
         
     | 
| 319 | 
         
            -
                # We call the `.T.contiguous()` to match what's done in
         
     | 
| 320 | 
         
            -
                # https://github.com/huggingface/diffusers/blob/84905ca7287876b925b6bf8e9bb92fec21c78764/src/diffusers/loaders/single_file_utils.py#L1085
         
     | 
| 321 | 
         
            -
                text_enc_2_dict["conditioner.embedders.1.model.text_projection"] = text_enc_2_dict.pop(
         
     | 
| 322 | 
         
            -
                    "conditioner.embedders.1.model.text_projection.weight"
         
     | 
| 323 | 
         
            -
                ).T.contiguous()
         
     | 
| 324 | 
         
            -
             
     | 
| 325 | 
         
            -
                # Put together new checkpoint
         
     | 
| 326 | 
         
            -
                state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict, **text_enc_2_dict}
         
     | 
| 327 | 
         
            -
             
     | 
| 328 | 
         
            -
                if dtype == "fp16": state_dict = {k: v.half() for k, v in state_dict.items()}
         
     | 
| 329 | 
         
            -
                elif dtype == "fp32": state_dict = {k: v.to(torch.float32) for k, v in state_dict.items()}
         
     | 
| 330 | 
         
            -
                elif dtype == "bf16": state_dict = {k: v.to(torch.bfloat16) for k, v in state_dict.items()}
         
     | 
| 331 | 
         
            -
             
     | 
| 332 | 
         
            -
                save_file(state_dict, checkpoint_path)
         
     | 
| 333 | 
         
            -
             
     | 
| 334 | 
         
            -
             
     | 
| 335 | 
         
            -
            def download_repo(repo_id, dir_path):
         
     | 
| 336 | 
         
            -
                from huggingface_hub import snapshot_download
         
     | 
| 337 | 
         
            -
                try:
         
     | 
| 338 | 
         
            -
                    snapshot_download(repo_id=repo_id, local_dir=dir_path)
         
     | 
| 339 | 
         
            -
                except Exception as e:
         
     | 
| 340 | 
         
            -
                    print(f"Error: Failed to download {repo_id}. {e}")
         
     | 
| 341 | 
         
            -
                    return
         
     | 
| 342 | 
         
            -
             
     | 
| 343 | 
         
            -
             
     | 
| 344 | 
         
            -
            def convert_repo_to_safetensors(repo_id, dtype="fp16"):
         
     | 
| 345 | 
         
            -
                download_dir = f"{repo_id.split('/')[0]}_{repo_id.split('/')[-1]}"
         
     | 
| 346 | 
         
            -
                output_filename = f"{repo_id.split('/')[0]}_{repo_id.split('/')[-1]}.safetensors"
         
     | 
| 347 | 
         
            -
                download_repo(repo_id, download_dir)
         
     | 
| 348 | 
         
            -
                convert_diffusers_to_safetensors(download_dir, output_filename, dtype)
         
     | 
| 349 | 
         
            -
                return output_filename
         
     | 
| 350 | 
         
            -
             
     | 
| 351 | 
         
            -
             
     | 
| 352 | 
         
            -
            if __name__ == "__main__":
         
     | 
| 353 | 
         
            -
                parser = argparse.ArgumentParser()
         
     | 
| 354 | 
         
            -
             
     | 
| 355 | 
         
            -
                parser.add_argument("--repo_id", default=None, type=str, required=True, help="HF Repo ID of the model to convert.")
         
     | 
| 356 | 
         
            -
                parser.add_argument("--dtype", default="fp16", type=str, choices=["fp16", "fp32", "bf16", "default"], help='Output data type. (Default: "fp16")')
         
     | 
| 357 | 
         
            -
             
     | 
| 358 | 
         
            -
                args = parser.parse_args()
         
     | 
| 359 | 
         
            -
                assert args.repo_id is not None, "Must provide a Repo ID!"
         
     | 
| 360 | 
         
            -
             
     | 
| 361 | 
         
            -
                convert_repo_to_safetensors(args.repo_id, args.dtype)
         
     | 
| 362 | 
         
            -
             
     | 
| 363 | 
         
            -
             
     | 
| 364 | 
         
            -
            # Usage: python convert_repo_to_safetensors.py --repo_id GraydientPlatformAPI/goodfit-pony41-xl
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         |