Spaces:
Sleeping
Sleeping
File size: 11,244 Bytes
01ff706 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import os
import glob
from PIL import Image
import numpy as np
import cv2 # OpenCV for image loading/processing
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, random_split
import torchvision.transforms.functional as TF
import pytorch_lightning as pl
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor, EarlyStopping
import albumentations as A
from albumentations.pytorch import ToTensorV2
import segmentation_models_pytorch as smp
from torchmetrics import JaccardIndex
from torchmetrics.segmentation import DiceScore
# --- Configuration ---
IMG_DIR = "derm_images_flat"
MASK_DIR = "derm_mask_images_flat"
MASK_SUFFIX = "_segmentation" # Part added to image name to get mask name
IMG_SIZE = (256, 256) # Resize images/masks to this size
BATCH_SIZE = 8
NUM_WORKERS = os.cpu_count() // 2
LEARNING_RATE = 1e-4 # Initial LR, will be tuned
MAX_EPOCHS = 5
VAL_SPLIT = 0.15 # 15% for validation
PATIENCE = 5 # For early stopping
ACCELERATOR = "gpu" if torch.cuda.is_available() else "cpu"
DEVICES = 1 if torch.cuda.is_available() else None
PRECISION = 16 if torch.cuda.is_available() else 32 # Use mixed precision if GPU supports it
# --- Dataset ---
class DermDataset(Dataset):
def __init__(self, image_paths, mask_dir, mask_suffix, transform=None):
self.image_paths = image_paths
self.mask_dir = mask_dir
self.mask_suffix = mask_suffix
self.transform = transform
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
img_path = self.image_paths[idx]
img_filename = os.path.basename(img_path)
img_name_part, img_ext = os.path.splitext(img_filename)
# Construct mask path - try common extensions like .png
mask_filename_base = f"{img_name_part}{self.mask_suffix}"
possible_mask_paths = glob.glob(os.path.join(self.mask_dir, f"{mask_filename_base}.*"))
if not possible_mask_paths:
raise FileNotFoundError(f"Mask not found for image: {img_path}. Tried pattern: {mask_filename_base}.* in {self.mask_dir}")
mask_path = possible_mask_paths[0] # Assume first found is the correct one
# Load image (ensure RGB)
image = cv2.imread(img_path)
if image is None:
raise IOError(f"Could not read image: {img_path}")
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Load mask (ensure grayscale)
mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
if mask is None:
raise IOError(f"Could not read mask: {mask_path}")
# Preprocess mask: ensure binary 0 or 1, add channel dim
mask = (mask > 128).astype(np.float32) # Threshold and convert to float
# mask = np.expand_dims(mask, axis=-1) # Add channel dim if needed by transforms/loss
# Apply transformations
if self.transform:
augmented = self.transform(image=image, mask=mask)
image = augmented['image']
mask = augmented['mask']
# Add channel dimension FOR THE MASK after albumentations if needed
# For BCEWithLogitsLoss with single class output, mask should be [B, 1, H, W]
mask = mask.unsqueeze(0) # Add channel dimension -> [1, H, W]
return {"image": image, "mask": mask}
# --- Transforms ---
def get_transforms(img_size, is_train=True):
if is_train:
# Augmentations for training
return A.Compose([
A.Resize(height=img_size[0], width=img_size[1]),
A.HorizontalFlip(p=0.5),
A.VerticalFlip(p=0.5),
A.RandomRotate90(p=0.5),
A.Affine(scale=(0.9, 1.1), translate_percent=0.0625, rotate=(-15, 15), p=0.5, cval=0),
A.OneOf([
A.ElasticTransform(p=0.5, alpha=120, sigma=120 * 0.05),
A.GridDistortion(p=0.5),
A.OpticalDistortion(distort_limit=0.5, p=1)
], p=0.3),
A.RandomBrightnessContrast(p=0.3),
A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), # ImageNet stats
ToTensorV2(), # Converts image HWC->CHW, mask HW->HW (need to add C dim later)
])
else:
# Validation/Test: Just resize and normalize
return A.Compose([
A.Resize(height=img_size[0], width=img_size[1]),
A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
ToTensorV2(),
])
# --- Lightning Module ---
class UNetLitModule(pl.LightningModule):
def __init__(self, learning_rate=1e-4):
super().__init__()
self.learning_rate = learning_rate
self.save_hyperparameters() # Saves args like learning_rate to hparams
# --- Model ---
# Using segmentation_models_pytorch
self.model = smp.Unet(
encoder_name="resnet34", # Choose backbone
encoder_weights="imagenet", # Use pretrained weights
in_channels=3, # Input channels (RGB)
classes=1, # Output channels (binary mask)
# activation='sigmoid' # Sigmoid usually applied *after* loss
)
# --- Loss Function ---
# BCEWithLogitsLoss is numerically stable for binary classification
self.loss_fn = nn.BCEWithLogitsLoss()
# --- Metrics ---
# Jaccard Index (IoU) for Segmentation
self.iou_metric = JaccardIndex(task="binary", threshold=0.5) # Threshold output probabilities
def forward(self, x):
return self.model(x)
def _common_step(self, batch, batch_idx, stage):
images = batch["image"]
masks = batch["mask"]
logits = self(images) # Model output (before activation)
loss = self.loss_fn(logits, masks)
# Calculate metrics
# Apply sigmoid before calculating metrics as they expect probabilities
preds = torch.sigmoid(logits)
iou = self.iou_metric(preds, masks.int()) # JaccardIndex expects integer masks
self.log(f"{stage}_loss", loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
self.log(f"{stage}_iou", iou, on_step=False, on_epoch=True, prog_bar=True, logger=True)
return loss
def training_step(self, batch, batch_idx):
return self._common_step(batch, batch_idx, "train")
def validation_step(self, batch, batch_idx):
return self._common_step(batch, batch_idx, "val")
def test_step(self, batch, batch_idx):
# Optional: If you have a separate test set
return self._common_step(batch, batch_idx, "test")
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
# Optional: Add a learning rate scheduler
# scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=3)
# return {"optimizer": optimizer, "lr_scheduler": {"scheduler": scheduler, "monitor": "val_loss"}}
return optimizer
# --- Main Training Script ---
if __name__ == "__main__":
pl.seed_everything(42) # for reproducibility
# --- Setup Data ---
all_image_paths = sorted(glob.glob(os.path.join(IMG_DIR, "*.*"))) # Find all image files
if not all_image_paths:
raise FileNotFoundError(f"No images found in {IMG_DIR}")
# Split data
n_total = len(all_image_paths)
n_val = int(n_total * VAL_SPLIT)
n_train = n_total - n_val
if n_train == 0 or n_val == 0:
raise ValueError(f"Train ({n_train}) or Val ({n_val}) split has 0 samples. Check VAL_SPLIT and dataset size.")
train_paths, val_paths = random_split(all_image_paths, [n_train, n_val])
train_dataset = DermDataset(list(train_paths), MASK_DIR, MASK_SUFFIX, transform=get_transforms(IMG_SIZE, is_train=True))
val_dataset = DermDataset(list(val_paths), MASK_DIR, MASK_SUFFIX, transform=get_transforms(IMG_SIZE, is_train=False))
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=NUM_WORKERS, pin_memory=True)
val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=NUM_WORKERS, pin_memory=True)
print(f"Found {n_total} images. Training on {len(train_dataset)}, Validating on {len(val_dataset)}.")
# --- Initialize Model ---
# Instantiate with a placeholder LR first for LR finder
model = UNetLitModule(learning_rate=LEARNING_RATE)
# --- Callbacks ---
checkpoint_callback = ModelCheckpoint(
dirpath="checkpoints",
filename="unet-derm-{epoch:02d}-{val_iou:.4f}",
save_top_k=1,
verbose=True,
monitor="val_iou", # Save based on validation IoU
mode="max" # Maximize IoU
)
lr_monitor = LearningRateMonitor(logging_interval='step')
early_stop_callback = EarlyStopping(
monitor="val_iou", # Monitor validation IoU
patience=PATIENCE,
verbose=True,
mode="max" # Stop if IoU stops improving
)
logger = TensorBoardLogger("tb_logs", name="unet_derm_resnet34")
# --- Trainer ---
trainer = pl.Trainer(
logger=logger,
callbacks=[checkpoint_callback, lr_monitor, early_stop_callback],
max_epochs=MAX_EPOCHS,
accelerator=ACCELERATOR,
devices=DEVICES,
precision=PRECISION,
log_every_n_steps=10,
# deterministic=True, # Might slow down training
)
# --- Find Optimal Learning Rate ---
print("\nFinding optimal learning rate...")
tuner = pl.tuner.Tuner(trainer)
lr_finder_result = tuner.lr_find(model, train_dataloaders=train_loader, val_dataloaders=val_loader, num_training=100) # Run LR finder for 100 steps
# Inspect results and pick learning rate
fig = lr_finder_result.plot(suggest=True)
fig.show() # Display plot
suggested_lr = lr_finder_result.suggestion()
if suggested_lr is not None:
print(f"Suggested LR: {suggested_lr:.2e}")
model.hparams.learning_rate = suggested_lr # Update model's hparam
print(f"Using LR: {model.hparams.learning_rate:.2e}")
else:
print(f"LR finder did not suggest a rate. Using initial LR: {model.hparams.learning_rate:.2e}")
# --- Start Training ---
print("\nStarting training...")
trainer.fit(model, train_dataloaders=train_loader, val_dataloaders=val_loader)
print("\nTraining finished.")
print(f"Best model saved at: {checkpoint_callback.best_model_path}")
# --- Save final model state dict separately (optional, sometimes easier for inference) ---
final_model_path = "unet_derm_final_model.pth"
# Load best model before saving state dict
best_model = UNetLitModule.load_from_checkpoint(checkpoint_callback.best_model_path)
torch.save(best_model.model.state_dict(), final_model_path)
print(f"Final model state_dict saved to: {final_model_path}") |