Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,147 +1,148 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
import numpy as np
|
4 |
-
import cv2 # Using OpenCV for image loading/processing
|
5 |
-
import albumentations as A
|
6 |
-
from albumentations.pytorch import ToTensorV2
|
7 |
-
import gradio as gr
|
8 |
-
|
9 |
-
import segmentation_models_pytorch as smp
|
10 |
-
from train_unet import UNetLitModule # Import the Lightning Module definition
|
11 |
-
|
12 |
-
# --- Configuration ---
|
13 |
-
# Option 1: Load from the Lightning Checkpoint
|
14 |
-
# CHECKPOINT_PATH = "checkpoints/unet-derm-epoch=XX-val_iou=Y.YYYY.ckpt" # Find the best checkpoint path from training output
|
15 |
-
# Option 2: Load from the saved state_dict
|
16 |
-
MODEL_STATE_DICT_PATH = "unet_derm_final_model.pth"
|
17 |
-
IMG_SIZE = (256, 256) # MUST match training image size
|
18 |
-
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
-
|
20 |
-
# --- Load Model ---
|
21 |
-
print(f"Loading model from: {MODEL_STATE_DICT_PATH}")
|
22 |
-
print(f"Using device: {DEVICE}")
|
23 |
-
|
24 |
-
# Instantiate the base SMP model architecture
|
25 |
-
model = smp.Unet(
|
26 |
-
encoder_name="resnet34",
|
27 |
-
encoder_weights=None, # Don't load pretrained weights, we load our trained ones
|
28 |
-
in_channels=3,
|
29 |
-
classes=1,
|
30 |
-
)
|
31 |
-
|
32 |
-
# Load the state dict saved at the end of training
|
33 |
-
try:
|
34 |
-
state_dict = torch.load(MODEL_STATE_DICT_PATH, map_location=DEVICE)
|
35 |
-
# If the state_dict was saved directly from the `model.model` attribute in LitModule:
|
36 |
-
model.load_state_dict(state_dict)
|
37 |
-
# If you saved the entire Lightning Module state_dict, you might need to extract the model part:
|
38 |
-
# state_dict = torch.load(MODEL_STATE_DICT_PATH, map_location=DEVICE)['state_dict']
|
39 |
-
# # Filter keys if they have a prefix like 'model.'
|
40 |
-
# state_dict = {k.replace('model.', ''): v for k, v in state_dict.items() if k.startswith('model.')}
|
41 |
-
# model.load_state_dict(state_dict)
|
42 |
-
|
43 |
-
except FileNotFoundError:
|
44 |
-
print(f"Error: Model file not found at {MODEL_STATE_DICT_PATH}")
|
45 |
-
print("Please ensure the training script ran successfully and the path is correct.")
|
46 |
-
exit()
|
47 |
-
except Exception as e:
|
48 |
-
print(f"Error loading model state_dict: {e}")
|
49 |
-
print("Ensure the saved state_dict matches the current model architecture.")
|
50 |
-
exit()
|
51 |
-
|
52 |
-
|
53 |
-
model.to(DEVICE)
|
54 |
-
model.eval() # Set model to evaluation mode (disables dropout, batchnorm updates)
|
55 |
-
|
56 |
-
# --- Inference Transforms ---
|
57 |
-
# Should match the validation/test transforms from training (resize, normalize)
|
58 |
-
inference_transform = A.Compose([
|
59 |
-
A.Resize(height=IMG_SIZE[0], width=IMG_SIZE[1]),
|
60 |
-
A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
|
61 |
-
ToTensorV2(),
|
62 |
-
])
|
63 |
-
|
64 |
-
# --- Segmentation Function ---
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
#
|
80 |
-
input_image_rgb = input_image_np.
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
probabilities
|
92 |
-
|
93 |
-
|
94 |
-
#
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
#
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
mask_rgb[:, :,
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
#
|
121 |
-
#
|
122 |
-
return display_mask_resized, overlay_image
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
gr.Markdown("
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
#
|
142 |
-
#
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
147 |
demo.launch(share=True) # Share=True to create public link
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import cv2 # Using OpenCV for image loading/processing
|
5 |
+
import albumentations as A
|
6 |
+
from albumentations.pytorch import ToTensorV2
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
import segmentation_models_pytorch as smp
|
10 |
+
from train_unet import UNetLitModule # Import the Lightning Module definition
|
11 |
+
|
12 |
+
# --- Configuration ---
|
13 |
+
# Option 1: Load from the Lightning Checkpoint
|
14 |
+
# CHECKPOINT_PATH = "checkpoints/unet-derm-epoch=XX-val_iou=Y.YYYY.ckpt" # Find the best checkpoint path from training output
|
15 |
+
# Option 2: Load from the saved state_dict
|
16 |
+
MODEL_STATE_DICT_PATH = "unet_derm_final_model.pth"
|
17 |
+
IMG_SIZE = (256, 256) # MUST match training image size
|
18 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
+
|
20 |
+
# --- Load Model ---
|
21 |
+
print(f"Loading model from: {MODEL_STATE_DICT_PATH}")
|
22 |
+
print(f"Using device: {DEVICE}")
|
23 |
+
|
24 |
+
# Instantiate the base SMP model architecture
|
25 |
+
model = smp.Unet(
|
26 |
+
encoder_name="resnet34",
|
27 |
+
encoder_weights=None, # Don't load pretrained weights, we load our trained ones
|
28 |
+
in_channels=3,
|
29 |
+
classes=1,
|
30 |
+
)
|
31 |
+
|
32 |
+
# Load the state dict saved at the end of training
|
33 |
+
try:
|
34 |
+
state_dict = torch.load(MODEL_STATE_DICT_PATH, map_location=DEVICE)
|
35 |
+
# If the state_dict was saved directly from the `model.model` attribute in LitModule:
|
36 |
+
model.load_state_dict(state_dict)
|
37 |
+
# If you saved the entire Lightning Module state_dict, you might need to extract the model part:
|
38 |
+
# state_dict = torch.load(MODEL_STATE_DICT_PATH, map_location=DEVICE)['state_dict']
|
39 |
+
# # Filter keys if they have a prefix like 'model.'
|
40 |
+
# state_dict = {k.replace('model.', ''): v for k, v in state_dict.items() if k.startswith('model.')}
|
41 |
+
# model.load_state_dict(state_dict)
|
42 |
+
|
43 |
+
except FileNotFoundError:
|
44 |
+
print(f"Error: Model file not found at {MODEL_STATE_DICT_PATH}")
|
45 |
+
print("Please ensure the training script ran successfully and the path is correct.")
|
46 |
+
exit()
|
47 |
+
except Exception as e:
|
48 |
+
print(f"Error loading model state_dict: {e}")
|
49 |
+
print("Ensure the saved state_dict matches the current model architecture.")
|
50 |
+
exit()
|
51 |
+
|
52 |
+
|
53 |
+
model.to(DEVICE)
|
54 |
+
model.eval() # Set model to evaluation mode (disables dropout, batchnorm updates)
|
55 |
+
|
56 |
+
# --- Inference Transforms ---
|
57 |
+
# Should match the validation/test transforms from training (resize, normalize)
|
58 |
+
inference_transform = A.Compose([
|
59 |
+
A.Resize(height=IMG_SIZE[0], width=IMG_SIZE[1]),
|
60 |
+
A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
|
61 |
+
ToTensorV2(),
|
62 |
+
])
|
63 |
+
|
64 |
+
# --- Segmentation Function ---
|
65 |
+
@spaces.GPU
|
66 |
+
def segment_image(input_image_np):
|
67 |
+
"""
|
68 |
+
Takes a NumPy image, performs segmentation, and returns images for Gradio.
|
69 |
+
"""
|
70 |
+
# 0. Input validation
|
71 |
+
if input_image_np is None:
|
72 |
+
return None, None, None
|
73 |
+
|
74 |
+
# Ensure image is RGB (Gradio might provide BGR or grayscale)
|
75 |
+
if len(input_image_np.shape) == 2: # Grayscale
|
76 |
+
input_image_np = cv2.cvtColor(input_image_np, cv2.COLOR_GRAY2RGB)
|
77 |
+
elif input_image_np.shape[2] == 4: # RGBA
|
78 |
+
input_image_np = cv2.cvtColor(input_image_np, cv2.COLOR_RGBA2RGB)
|
79 |
+
# Assume BGR if 3 channels, convert to RGB for consistency with training
|
80 |
+
# input_image_rgb = cv2.cvtColor(input_image_np, cv2.COLOR_BGR2RGB) # PIL/Gradio usually loads RGB
|
81 |
+
input_image_rgb = input_image_np.copy()
|
82 |
+
|
83 |
+
|
84 |
+
# 1. Preprocess the image
|
85 |
+
transformed = inference_transform(image=input_image_rgb)
|
86 |
+
image_tensor = transformed['image'].unsqueeze(0).to(DEVICE) # Add batch dim and send to device
|
87 |
+
|
88 |
+
# 2. Perform inference
|
89 |
+
with torch.no_grad():
|
90 |
+
logits = model(image_tensor) # Output is [1, 1, H, W] logits
|
91 |
+
# Apply sigmoid to get probabilities [0, 1]
|
92 |
+
probabilities = torch.sigmoid(logits)
|
93 |
+
|
94 |
+
# 3. Postprocess the output mask
|
95 |
+
# Remove batch dimension, move to CPU, convert to NumPy
|
96 |
+
mask_pred_np = probabilities.squeeze().cpu().numpy() # Shape: [H, W]
|
97 |
+
|
98 |
+
# Threshold probabilities to get binary mask (0 or 1)
|
99 |
+
binary_mask_np = (mask_pred_np > 0.5).astype(np.uint8)
|
100 |
+
|
101 |
+
# Convert binary mask to a displayable format (e.g., 0 or 255)
|
102 |
+
display_mask = (binary_mask_np * 255) # Shape: [H, W]
|
103 |
+
|
104 |
+
# Resize mask back to original image size for overlay (optional, better overlay quality)
|
105 |
+
orig_h, orig_w = input_image_rgb.shape[:2]
|
106 |
+
display_mask_resized = cv2.resize(display_mask, (orig_w, orig_h), interpolation=cv2.INTER_NEAREST)
|
107 |
+
|
108 |
+
# 4. Create Overlay
|
109 |
+
# Convert single-channel mask to 3 channels to overlay on RGB image
|
110 |
+
mask_rgb = cv2.cvtColor(display_mask_resized, cv2.COLOR_GRAY2RGB)
|
111 |
+
# Make the mask red where segmentation is present
|
112 |
+
mask_rgb[:, :, 0] = 0 # Zero out Blue channel
|
113 |
+
mask_rgb[:, :, 1] = 0 # Zero out Green channel
|
114 |
+
# Where mask_rgb is red (255), keep original image pixel, otherwise blend
|
115 |
+
overlay_image = cv2.addWeighted(input_image_rgb, 0.7, mask_rgb, 0.3, 0)
|
116 |
+
# Highlight only the segmented area more distinctly
|
117 |
+
highlighted_area = cv2.bitwise_and(input_image_rgb, input_image_rgb, mask=display_mask_resized)
|
118 |
+
overlay_image = cv2.addWeighted(input_image_rgb, 0.7, highlighted_area, 0.9, 0) # Blend original with highlighted
|
119 |
+
|
120 |
+
# Return original, mask (resized), overlay
|
121 |
+
# Gradio expects NumPy arrays
|
122 |
+
#return input_image_rgb, display_mask_resized, overlay_image
|
123 |
+
return display_mask_resized, overlay_image
|
124 |
+
|
125 |
+
|
126 |
+
# --- Gradio Interface ---
|
127 |
+
print("Launching Gradio Interface...")
|
128 |
+
|
129 |
+
with gr.Blocks() as demo:
|
130 |
+
gr.Markdown("# Dermatology Image Segmentation (UNet ResNet34)")
|
131 |
+
gr.Markdown("Upload a dermatology image to see the predicted segmentation mask using a trained UNet model.")
|
132 |
+
|
133 |
+
with gr.Row(): # Creates a horizontal container
|
134 |
+
inp = gr.Image(type="numpy", label="Input Image")
|
135 |
+
out_mask = gr.Image(type="numpy", label="Segmentation Mask")
|
136 |
+
out_overlay = gr.Image(type="numpy", label="Overlay")
|
137 |
+
|
138 |
+
# Hook up the function
|
139 |
+
inp.change(fn=segment_image, inputs=inp, outputs=[out_mask, out_overlay])
|
140 |
+
|
141 |
+
# (Optional) add example images
|
142 |
+
# gr.Examples(examples=[["examples/img1.jpg"], ["examples/img2.jpg"]],
|
143 |
+
# inputs=inp, outputs=[out_mask, out_overlay])
|
144 |
+
|
145 |
+
# Disable flagging
|
146 |
+
|
147 |
+
if __name__ == "__main__":
|
148 |
demo.launch(share=True) # Share=True to create public link
|