import gradio as gr import subprocess import torch from PIL import Image from transformers import AutoProcessor, AutoModelForCausalLM subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) device = "cuda" if torch.cuda.is_available() else "cpu" florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval() florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True) def generate_captions(image): if not isinstance(image, Image.Image): image = Image.fromarray(image) inputs = florence_processor(text="", images=image, return_tensors="pt").to(device) captions = [] for i in range(3): generated_ids = florence_model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, early_stopping=False, do_sample=True, temperature=0.7 + i * 0.1, num_beams=3 ) generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = florence_processor.post_process_generation( generated_text, task="", image_size=(image.width, image.height) ) prompt = parsed_answer[""] captions.append(prompt) print(f"\n\nGeneration {i+1} completed!:" + prompt) return "\n\n".join([f"Caption {i+1}: {caption}" for i, caption in enumerate(captions)]) io = gr.Interface( generate_captions, inputs=[gr.Image(label="Input Image")], outputs=[gr.Textbox(label="Output Captions", lines=10, show_copy_button=True)], theme="Yntec/HaleyCH_Theme_Orange" ) io.launch(debug=True)