File size: 8,321 Bytes
ccfe94d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import argparse
import binascii
import os
import os.path as osp
import torchvision.transforms.functional as TF
import torch.nn.functional as F

import imageio
import torch
import decord
import torchvision
from PIL import Image
import numpy as np
from rembg import remove, new_session
import random

__all__ = ['cache_video', 'cache_image', 'str2bool']



from PIL import Image

def seed_everything(seed: int):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)
    if torch.backends.mps.is_available():
        torch.mps.manual_seed(seed)
        
def resample(video_fps, video_frames_count, max_target_frames_count, target_fps, start_target_frame ):
    import math

    if video_fps < target_fps :
        video_fps = target_fps

    video_frame_duration = 1 /video_fps
    target_frame_duration = 1 / target_fps 
    
    target_time = start_target_frame * target_frame_duration
    frame_no = math.ceil(target_time / video_frame_duration)  
    cur_time = frame_no * video_frame_duration
    frame_ids =[]
    while True:
        if max_target_frames_count != 0 and len(frame_ids) >= max_target_frames_count :
            break
        diff = round( (target_time -cur_time) / video_frame_duration , 5)
        add_frames_count = math.ceil( diff)
        frame_no += add_frames_count
        if frame_no >= video_frames_count:             
            break
        frame_ids.append(frame_no)
        cur_time += add_frames_count * video_frame_duration
        target_time += target_frame_duration
    frame_ids = frame_ids[:max_target_frames_count]
    return frame_ids

def get_video_frame(file_name, frame_no):
    decord.bridge.set_bridge('torch')
    reader = decord.VideoReader(file_name)

    frame = reader.get_batch([frame_no]).squeeze(0)
    img = Image.fromarray(frame.numpy().astype(np.uint8))
    return img

def resize_lanczos(img, h, w):
    img = Image.fromarray(np.clip(255. * img.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8))
    img = img.resize((w,h), resample=Image.Resampling.LANCZOS) 
    return torch.from_numpy(np.array(img).astype(np.float32) / 255.0).movedim(-1, 0)


def remove_background(img, session=None):
    if session ==None:
        session = new_session() 
    img = Image.fromarray(np.clip(255. * img.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8))
    img = remove(img, session=session, alpha_matting = True, bgcolor=[255, 255, 255, 0]).convert('RGB')
    return torch.from_numpy(np.array(img).astype(np.float32) / 255.0).movedim(-1, 0)


def calculate_new_dimensions(canvas_height, canvas_width, height, width, fit_into_canvas, block_size = 16):
    if fit_into_canvas:
        scale1  = min(canvas_height / height, canvas_width / width)
        scale2  = min(canvas_width / height, canvas_height / width)
        scale = max(scale1, scale2) 
    else:
        scale = (canvas_height * canvas_width / (height * width))**(1/2)

    new_height = round( height * scale / block_size) * block_size
    new_width = round( width * scale / block_size) * block_size
    return new_height, new_width

def resize_and_remove_background(img_list, budget_width, budget_height, rm_background, fit_into_canvas = False ):
    if rm_background  > 0:
        session = new_session() 

    output_list =[]
    for i, img in enumerate(img_list):
        width, height =  img.size 

        if fit_into_canvas:
            white_canvas = np.ones((budget_height, budget_width, 3), dtype=np.uint8) * 255 
            scale = min(budget_height / height, budget_width / width)
            new_height = int(height * scale)
            new_width = int(width * scale)
            resized_image= img.resize((new_width,new_height), resample=Image.Resampling.LANCZOS) 
            top = (budget_height - new_height) // 2
            left = (budget_width - new_width) // 2
            white_canvas[top:top + new_height, left:left + new_width] = np.array(resized_image)            
            resized_image = Image.fromarray(white_canvas)  
        else:
            scale = (budget_height * budget_width / (height * width))**(1/2)
            new_height = int( round(height * scale / 16) * 16)
            new_width = int( round(width * scale / 16) * 16)
            resized_image= img.resize((new_width,new_height), resample=Image.Resampling.LANCZOS) 
        if rm_background == 1 or rm_background == 2 and i > 0 :
            # resized_image = remove(resized_image, session=session, alpha_matting_erode_size = 1,alpha_matting_background_threshold = 70, alpha_foreground_background_threshold = 100, alpha_matting = True, bgcolor=[255, 255, 255, 0]).convert('RGB')
            resized_image = remove(resized_image, session=session, alpha_matting_erode_size = 1, alpha_matting = True, bgcolor=[255, 255, 255, 0]).convert('RGB')
        output_list.append(resized_image) #alpha_matting_background_threshold = 30, alpha_foreground_background_threshold = 200,
    return output_list


def rand_name(length=8, suffix=''):
    name = binascii.b2a_hex(os.urandom(length)).decode('utf-8')
    if suffix:
        if not suffix.startswith('.'):
            suffix = '.' + suffix
        name += suffix
    return name


def cache_video(tensor,

                save_file=None,

                fps=30,

                suffix='.mp4',

                nrow=8,

                normalize=True,

                value_range=(-1, 1),

                retry=5):
    # cache file
    cache_file = osp.join('/tmp', rand_name(
        suffix=suffix)) if save_file is None else save_file

    # save to cache
    error = None
    for _ in range(retry):
        try:
            # preprocess
            tensor = tensor.clamp(min(value_range), max(value_range))
            tensor = torch.stack([
                torchvision.utils.make_grid(
                    u, nrow=nrow, normalize=normalize, value_range=value_range)
                for u in tensor.unbind(2)
            ],
                                 dim=1).permute(1, 2, 3, 0)
            tensor = (tensor * 255).type(torch.uint8).cpu()

            # write video
            writer = imageio.get_writer(
                cache_file, fps=fps, codec='libx264', quality=8)
            for frame in tensor.numpy():
                writer.append_data(frame)
            writer.close()
            return cache_file
        except Exception as e:
            error = e
            continue
    else:
        print(f'cache_video failed, error: {error}', flush=True)
        return None


def cache_image(tensor,

                save_file,

                nrow=8,

                normalize=True,

                value_range=(-1, 1),

                retry=5):
    # cache file
    suffix = osp.splitext(save_file)[1]
    if suffix.lower() not in [
            '.jpg', '.jpeg', '.png', '.tiff', '.gif', '.webp'
    ]:
        suffix = '.png'

    # save to cache
    error = None
    for _ in range(retry):
        try:
            tensor = tensor.clamp(min(value_range), max(value_range))
            torchvision.utils.save_image(
                tensor,
                save_file,
                nrow=nrow,
                normalize=normalize,
                value_range=value_range)
            return save_file
        except Exception as e:
            error = e
            continue


def str2bool(v):
    """

    Convert a string to a boolean.



    Supported true values: 'yes', 'true', 't', 'y', '1'

    Supported false values: 'no', 'false', 'f', 'n', '0'



    Args:

        v (str): String to convert.



    Returns:

        bool: Converted boolean value.



    Raises:

        argparse.ArgumentTypeError: If the value cannot be converted to boolean.

    """
    if isinstance(v, bool):
        return v
    v_lower = v.lower()
    if v_lower in ('yes', 'true', 't', 'y', '1'):
        return True
    elif v_lower in ('no', 'false', 'f', 'n', '0'):
        return False
    else:
        raise argparse.ArgumentTypeError('Boolean value expected (True/False)')