Wan2GP / wan /text2video.py
JoranF's picture
Upload folder using huggingface_hub
ccfe94d verified
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import gc
import logging
import math
import os
import random
import sys
import types
from contextlib import contextmanager
from functools import partial
from mmgp import offload
import torch
import torch.nn as nn
import torch.cuda.amp as amp
import torch.distributed as dist
from tqdm import tqdm
from PIL import Image
import torchvision.transforms.functional as TF
import torch.nn.functional as F
from .distributed.fsdp import shard_model
from .modules.model import WanModel
from .modules.t5 import T5EncoderModel
from .modules.vae import WanVAE
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
get_sampling_sigmas, retrieve_timesteps)
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
from wan.modules.posemb_layers import get_rotary_pos_embed
from .utils.vace_preprocessor import VaceVideoProcessor
from wan.utils.basic_flowmatch import FlowMatchScheduler
def optimized_scale(positive_flat, negative_flat):
# Calculate dot production
dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True)
# Squared norm of uncondition
squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8
# st_star = v_cond^T * v_uncond / ||v_uncond||^2
st_star = dot_product / squared_norm
return st_star
class WanT2V:
def __init__(
self,
config,
checkpoint_dir,
rank=0,
model_filename = None,
text_encoder_filename = None,
quantizeTransformer = False,
dtype = torch.bfloat16,
VAE_dtype = torch.float32,
mixed_precision_transformer = False
):
self.device = torch.device(f"cuda")
self.config = config
self.rank = rank
self.dtype = dtype
self.num_train_timesteps = config.num_train_timesteps
self.param_dtype = config.param_dtype
self.text_encoder = T5EncoderModel(
text_len=config.text_len,
dtype=config.t5_dtype,
device=torch.device('cpu'),
checkpoint_path=text_encoder_filename,
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
shard_fn= None)
self.vae_stride = config.vae_stride
self.patch_size = config.patch_size
self.vae = WanVAE(
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint), dtype= VAE_dtype,
device=self.device)
logging.info(f"Creating WanModel from {model_filename[-1]}")
from mmgp import offload
# model_filename = "c:/temp/vace1.3/diffusion_pytorch_model.safetensors"
# model_filename = "vace14B_quanto_bf16_int8.safetensors"
# model_filename = "c:/temp/phantom/Phantom_Wan_14B-00001-of-00006.safetensors"
# config_filename= "c:/temp/phantom/config.json"
self.model = offload.fast_load_transformers_model(model_filename, modelClass=WanModel,do_quantize= quantizeTransformer, writable_tensors= False)#, forcedConfigPath= config_filename)
# offload.load_model_data(self.model, "e:/vace.safetensors")
# offload.load_model_data(self.model, "c:/temp/Phantom-Wan-1.3B.pth")
# self.model.to(torch.bfloat16)
# self.model.cpu()
self.model.lock_layers_dtypes(torch.float32 if mixed_precision_transformer else dtype)
# dtype = torch.bfloat16
offload.change_dtype(self.model, dtype, True)
# offload.save_model(self.model, "wan2.1_phantom_14B_mbf16.safetensors", config_file_path=config_filename)
# offload.save_model(self.model, "wan2.1_phantom_14B_quanto_fp16_int8.safetensors", do_quantize= True, config_file_path=config_filename)
self.model.eval().requires_grad_(False)
self.sample_neg_prompt = config.sample_neg_prompt
if "Vace" in model_filename[-1]:
self.vid_proc = VaceVideoProcessor(downsample=tuple([x * y for x, y in zip(config.vae_stride, self.patch_size)]),
min_area=480*832,
max_area=480*832,
min_fps=config.sample_fps,
max_fps=config.sample_fps,
zero_start=True,
seq_len=32760,
keep_last=True)
self.adapt_vace_model()
def vace_encode_frames(self, frames, ref_images, masks=None, tile_size = 0, overlapped_latents = None):
if ref_images is None:
ref_images = [None] * len(frames)
else:
assert len(frames) == len(ref_images)
if masks is None:
latents = self.vae.encode(frames, tile_size = tile_size)
else:
inactive = [i * (1 - m) + 0 * m for i, m in zip(frames, masks)]
reactive = [i * m + 0 * (1 - m) for i, m in zip(frames, masks)]
inactive = self.vae.encode(inactive, tile_size = tile_size)
self.toto = inactive[0].clone()
if overlapped_latents != None :
# inactive[0][:, 0:1] = self.vae.encode([frames[0][:, 0:1]], tile_size = tile_size)[0] # redundant
inactive[0][:, 1:overlapped_latents.shape[1] + 1] = overlapped_latents
reactive = self.vae.encode(reactive, tile_size = tile_size)
latents = [torch.cat((u, c), dim=0) for u, c in zip(inactive, reactive)]
cat_latents = []
for latent, refs in zip(latents, ref_images):
if refs is not None:
if masks is None:
ref_latent = self.vae.encode(refs, tile_size = tile_size)
else:
ref_latent = self.vae.encode(refs, tile_size = tile_size)
ref_latent = [torch.cat((u, torch.zeros_like(u)), dim=0) for u in ref_latent]
assert all([x.shape[1] == 1 for x in ref_latent])
latent = torch.cat([*ref_latent, latent], dim=1)
cat_latents.append(latent)
return cat_latents
def vace_encode_masks(self, masks, ref_images=None):
if ref_images is None:
ref_images = [None] * len(masks)
else:
assert len(masks) == len(ref_images)
result_masks = []
for mask, refs in zip(masks, ref_images):
c, depth, height, width = mask.shape
new_depth = int((depth + 3) // self.vae_stride[0])
height = 2 * (int(height) // (self.vae_stride[1] * 2))
width = 2 * (int(width) // (self.vae_stride[2] * 2))
# reshape
mask = mask[0, :, :, :]
mask = mask.view(
depth, height, self.vae_stride[1], width, self.vae_stride[1]
) # depth, height, 8, width, 8
mask = mask.permute(2, 4, 0, 1, 3) # 8, 8, depth, height, width
mask = mask.reshape(
self.vae_stride[1] * self.vae_stride[2], depth, height, width
) # 8*8, depth, height, width
# interpolation
mask = F.interpolate(mask.unsqueeze(0), size=(new_depth, height, width), mode='nearest-exact').squeeze(0)
if refs is not None:
length = len(refs)
mask_pad = torch.zeros_like(mask[:, :length, :, :])
mask = torch.cat((mask_pad, mask), dim=1)
result_masks.append(mask)
return result_masks
def vace_latent(self, z, m):
return [torch.cat([zz, mm], dim=0) for zz, mm in zip(z, m)]
def prepare_source(self, src_video, src_mask, src_ref_images, total_frames, image_size, device, original_video = False, keep_frames= [], start_frame = 0, fit_into_canvas = True, pre_src_video = None):
image_sizes = []
trim_video = len(keep_frames)
canvas_height, canvas_width = image_size
for i, (sub_src_video, sub_src_mask, sub_pre_src_video) in enumerate(zip(src_video, src_mask,pre_src_video)):
prepend_count = 0 if sub_pre_src_video == None else sub_pre_src_video.shape[1]
num_frames = total_frames - prepend_count
if sub_src_mask is not None and sub_src_video is not None:
src_video[i], src_mask[i], _, _, _ = self.vid_proc.load_video_pair(sub_src_video, sub_src_mask, max_frames= num_frames, trim_video = trim_video - prepend_count, start_frame = start_frame, canvas_height = canvas_height, canvas_width = canvas_width, fit_into_canvas = fit_into_canvas)
# src_video is [-1, 1] (at this function output), 0 = inpainting area (in fact 127 in [0, 255])
# src_mask is [-1, 1] (at this function output), 0 = preserve original video (in fact 127 in [0, 255]) and 1 = Inpainting (in fact 255 in [0, 255])
src_video[i] = src_video[i].to(device)
src_mask[i] = src_mask[i].to(device)
if prepend_count > 0:
src_video[i] = torch.cat( [sub_pre_src_video, src_video[i]], dim=1)
src_mask[i] = torch.cat( [torch.full_like(sub_pre_src_video, -1.0), src_mask[i]] ,1)
src_video_shape = src_video[i].shape
if src_video_shape[1] != total_frames:
src_video[i] = torch.cat( [src_video[i], src_video[i].new_zeros(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
src_mask[i] = torch.cat( [src_mask[i], src_mask[i].new_ones(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
src_mask[i] = torch.clamp((src_mask[i][:1, :, :, :] + 1) / 2, min=0, max=1)
image_sizes.append(src_video[i].shape[2:])
elif sub_src_video is None:
if prepend_count > 0:
src_video[i] = torch.cat( [sub_pre_src_video, torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device)], dim=1)
src_mask[i] = torch.cat( [torch.zeros_like(sub_pre_src_video), torch.ones((3, num_frames, image_size[0], image_size[1]), device=device)] ,1)
else:
src_video[i] = torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device)
src_mask[i] = torch.ones_like(src_video[i], device=device)
image_sizes.append(image_size)
else:
src_video[i], _, _, _ = self.vid_proc.load_video(sub_src_video, max_frames= num_frames, trim_video = trim_video - prepend_count, start_frame = start_frame, canvas_height = canvas_height, canvas_width = canvas_width, fit_into_canvas = fit_into_canvas)
src_video[i] = src_video[i].to(device)
src_mask[i] = torch.zeros_like(src_video[i], device=device) if original_video else torch.ones_like(src_video[i], device=device)
if prepend_count > 0:
src_video[i] = torch.cat( [sub_pre_src_video, src_video[i]], dim=1)
src_mask[i] = torch.cat( [torch.zeros_like(sub_pre_src_video), src_mask[i]] ,1)
src_video_shape = src_video[i].shape
if src_video_shape[1] != total_frames:
src_video[i] = torch.cat( [src_video[i], src_video[i].new_zeros(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
src_mask[i] = torch.cat( [src_mask[i], src_mask[i].new_ones(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
image_sizes.append(src_video[i].shape[2:])
for k, keep in enumerate(keep_frames):
if not keep:
src_video[i][:, k:k+1] = 0
src_mask[i][:, k:k+1] = 1
for i, ref_images in enumerate(src_ref_images):
if ref_images is not None:
image_size = image_sizes[i]
for j, ref_img in enumerate(ref_images):
if ref_img is not None:
ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(1)
if ref_img.shape[-2:] != image_size:
canvas_height, canvas_width = image_size
ref_height, ref_width = ref_img.shape[-2:]
white_canvas = torch.ones((3, 1, canvas_height, canvas_width), device=device) # [-1, 1]
scale = min(canvas_height / ref_height, canvas_width / ref_width)
new_height = int(ref_height * scale)
new_width = int(ref_width * scale)
resized_image = F.interpolate(ref_img.squeeze(1).unsqueeze(0), size=(new_height, new_width), mode='bilinear', align_corners=False).squeeze(0).unsqueeze(1)
top = (canvas_height - new_height) // 2
left = (canvas_width - new_width) // 2
white_canvas[:, :, top:top + new_height, left:left + new_width] = resized_image
ref_img = white_canvas
src_ref_images[i][j] = ref_img.to(device)
return src_video, src_mask, src_ref_images
def decode_latent(self, zs, ref_images=None, tile_size= 0 ):
if ref_images is None:
ref_images = [None] * len(zs)
else:
assert len(zs) == len(ref_images)
trimed_zs = []
for z, refs in zip(zs, ref_images):
if refs is not None:
z = z[:, len(refs):, :, :]
trimed_zs.append(z)
return self.vae.decode(trimed_zs, tile_size= tile_size)
def get_vae_latents(self, ref_images, device, tile_size= 0):
ref_vae_latents = []
for ref_image in ref_images:
ref_image = TF.to_tensor(ref_image).sub_(0.5).div_(0.5).to(self.device)
img_vae_latent = self.vae.encode([ref_image.unsqueeze(1)], tile_size= tile_size)
ref_vae_latents.append(img_vae_latent[0])
return torch.cat(ref_vae_latents, dim=1)
def generate(self,
input_prompt,
input_frames= None,
input_masks = None,
input_ref_images = None,
input_video=None,
target_camera=None,
context_scale=1.0,
width = 1280,
height = 720,
fit_into_canvas = True,
frame_num=81,
shift=5.0,
sample_solver='unipc',
sampling_steps=50,
guide_scale=5.0,
n_prompt="",
seed=-1,
offload_model=True,
callback = None,
enable_RIFLEx = None,
VAE_tile_size = 0,
joint_pass = False,
slg_layers = None,
slg_start = 0.0,
slg_end = 1.0,
cfg_star_switch = True,
cfg_zero_step = 5,
overlapped_latents = None,
return_latent_slice = None,
overlap_noise = 0,
conditioning_latents_size = 0,
model_filename = None,
**bbargs
):
r"""
Generates video frames from text prompt using diffusion process.
Args:
input_prompt (`str`):
Text prompt for content generation
size (tupele[`int`], *optional*, defaults to (1280,720)):
Controls video resolution, (width,height).
frame_num (`int`, *optional*, defaults to 81):
How many frames to sample from a video. The number should be 4n+1
shift (`float`, *optional*, defaults to 5.0):
Noise schedule shift parameter. Affects temporal dynamics
sample_solver (`str`, *optional*, defaults to 'unipc'):
Solver used to sample the video.
sampling_steps (`int`, *optional*, defaults to 40):
Number of diffusion sampling steps. Higher values improve quality but slow generation
guide_scale (`float`, *optional*, defaults 5.0):
Classifier-free guidance scale. Controls prompt adherence vs. creativity
n_prompt (`str`, *optional*, defaults to ""):
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
seed (`int`, *optional*, defaults to -1):
Random seed for noise generation. If -1, use random seed.
offload_model (`bool`, *optional*, defaults to True):
If True, offloads models to CPU during generation to save VRAM
Returns:
torch.Tensor:
Generated video frames tensor. Dimensions: (C, N H, W) where:
- C: Color channels (3 for RGB)
- N: Number of frames (81)
- H: Frame height (from size)
- W: Frame width from size)
"""
# preprocess
vace = "Vace" in model_filename
if n_prompt == "":
n_prompt = self.sample_neg_prompt
seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
seed_g = torch.Generator(device=self.device)
seed_g.manual_seed(seed)
if self._interrupt:
return None
context = self.text_encoder([input_prompt], self.device)[0]
context_null = self.text_encoder([n_prompt], self.device)[0]
context = context.to(self.dtype)
context_null = context_null.to(self.dtype)
input_ref_images_neg = None
phantom = False
if target_camera != None:
width = input_video.shape[2]
height = input_video.shape[1]
input_video = input_video.to(dtype=self.dtype , device=self.device)
input_video = input_video.permute(3, 0, 1, 2).div_(127.5).sub_(1.)
source_latents = self.vae.encode([input_video])[0] #.to(dtype=self.dtype, device=self.device)
del input_video
# Process target camera (recammaster)
from wan.utils.cammmaster_tools import get_camera_embedding
cam_emb = get_camera_embedding(target_camera)
cam_emb = cam_emb.to(dtype=self.dtype, device=self.device)
if vace :
# vace context encode
input_frames = [u.to(self.device) for u in input_frames]
input_ref_images = [ None if u == None else [v.to(self.device) for v in u] for u in input_ref_images]
input_masks = [u.to(self.device) for u in input_masks]
previous_latents = None
# if overlapped_latents != None:
# input_ref_images = [u[-1:] for u in input_ref_images]
z0 = self.vace_encode_frames(input_frames, input_ref_images, masks=input_masks, tile_size = VAE_tile_size, overlapped_latents = overlapped_latents )
m0 = self.vace_encode_masks(input_masks, input_ref_images)
z = self.vace_latent(z0, m0)
target_shape = list(z0[0].shape)
target_shape[0] = int(target_shape[0] / 2)
else:
if input_ref_images != None: # Phantom Ref images
phantom = True
input_ref_images = self.get_vae_latents(input_ref_images, self.device)
input_ref_images_neg = torch.zeros_like(input_ref_images)
F = frame_num
target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1 + (input_ref_images.shape[1] if input_ref_images != None else 0),
height // self.vae_stride[1],
width // self.vae_stride[2])
seq_len = math.ceil((target_shape[2] * target_shape[3]) /
(self.patch_size[1] * self.patch_size[2]) *
target_shape[1])
if self._interrupt:
return None
noise = [ torch.randn( *target_shape, dtype=torch.float32, device=self.device, generator=seed_g) ]
# evaluation mode
if False:
sample_scheduler = FlowMatchScheduler(num_inference_steps=sampling_steps, shift=shift, sigma_min=0, extra_one_step=True)
timesteps = torch.tensor([1000, 934, 862, 756, 603, 410, 250, 140, 74, 0])[:sampling_steps].to(self.device)
sample_scheduler.timesteps =timesteps
elif sample_solver == 'unipc':
sample_scheduler = FlowUniPCMultistepScheduler( num_train_timesteps=self.num_train_timesteps, shift=1, use_dynamic_shifting=False)
sample_scheduler.set_timesteps( sampling_steps, device=self.device, shift=shift)
timesteps = sample_scheduler.timesteps
elif sample_solver == 'dpm++':
sample_scheduler = FlowDPMSolverMultistepScheduler(
num_train_timesteps=self.num_train_timesteps,
shift=1,
use_dynamic_shifting=False)
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
timesteps, _ = retrieve_timesteps(
sample_scheduler,
device=self.device,
sigmas=sampling_sigmas)
else:
raise NotImplementedError("Unsupported solver.")
# sample videos
latents = noise[0]
del noise
batch_size = 1
if target_camera != None:
shape = list(latents.shape[1:])
shape[0] *= 2
freqs = get_rotary_pos_embed(shape, enable_RIFLEx= False)
else:
freqs = get_rotary_pos_embed(latents.shape[1:], enable_RIFLEx= enable_RIFLEx)
kwargs = {'freqs': freqs, 'pipeline': self, 'callback': callback}
if target_camera != None:
kwargs.update({'cam_emb': cam_emb})
if vace:
ref_images_count = len(input_ref_images[0]) if input_ref_images != None and input_ref_images[0] != None else 0
kwargs.update({'vace_context' : z, 'vace_context_scale' : context_scale})
if overlapped_latents != None :
overlapped_latents_size = overlapped_latents.shape[1] + 1
# overlapped_latents_size = 3
z_reactive = [ zz[0:16, 0:overlapped_latents_size + ref_images_count].clone() for zz in z]
if self.model.enable_teacache:
x_count = 3 if phantom else 2
self.model.previous_residual = [None] * x_count
self.model.compute_teacache_threshold(self.model.teacache_start_step, timesteps, self.model.teacache_multiplier)
if callback != None:
callback(-1, None, True)
prev = 50/1000
for i, t in enumerate(tqdm(timesteps)):
timestep = [t]
if overlapped_latents != None :
# overlap_noise_factor = overlap_noise *(i/(len(timesteps)-1)) / 1000
overlap_noise_factor = overlap_noise / 1000
# overlap_noise_factor = (1000-t )/ 1000 # overlap_noise / 1000
# latent_noise_factor = 1 #max(min(1, (t - overlap_noise) / 1000 ),0)
latent_noise_factor = t / 1000
for zz, zz_r, ll in zip(z, z_reactive, [latents]):
pass
zz[0:16, ref_images_count:overlapped_latents_size + ref_images_count] = zz_r[:, ref_images_count:] * (1.0 - overlap_noise_factor) + torch.randn_like(zz_r[:, ref_images_count:] ) * overlap_noise_factor
ll[:, 0:overlapped_latents_size + ref_images_count] = zz_r * (1.0 - latent_noise_factor) + torch.randn_like(zz_r ) * latent_noise_factor
if conditioning_latents_size > 0 and overlap_noise > 0:
pass
overlap_noise_factor = overlap_noise / 1000
# latents[:, conditioning_latents_size + ref_images_count:] = latents[:, conditioning_latents_size + ref_images_count:] * (1.0 - overlap_noise_factor) + torch.randn_like(latents[:, conditioning_latents_size + ref_images_count:]) * overlap_noise_factor
# timestep = [torch.tensor([t.item()] * (conditioning_latents_size + ref_images_count) + [t.item() - overlap_noise]*(target_shape[1] - conditioning_latents_size - ref_images_count))]
if target_camera != None:
latent_model_input = torch.cat([latents, source_latents], dim=1)
else:
latent_model_input = latents
kwargs["slg_layers"] = slg_layers if int(slg_start * sampling_steps) <= i < int(slg_end * sampling_steps) else None
offload.set_step_no_for_lora(self.model, i)
timestep = torch.stack(timestep)
kwargs["current_step"] = i
kwargs["t"] = timestep
if guide_scale == 1:
noise_pred = self.model( [latent_model_input], x_id = 0, context = [context], **kwargs)[0]
if self._interrupt:
return None
elif joint_pass:
if phantom:
pos_it, pos_i, neg = self.model(
[ torch.cat([latent_model_input[:,:-input_ref_images.shape[1]], input_ref_images], dim=1) ] * 2 +
[ torch.cat([latent_model_input[:,:-input_ref_images_neg.shape[1]], input_ref_images_neg], dim=1)],
context = [context, context_null, context_null], **kwargs)
else:
noise_pred_cond, noise_pred_uncond = self.model(
[latent_model_input, latent_model_input], context = [context, context_null], **kwargs)
if self._interrupt:
return None
else:
if phantom:
pos_it = self.model(
[ torch.cat([latent_model_input[:,:-input_ref_images.shape[1]], input_ref_images], dim=1) ], x_id = 0, context = [context], **kwargs
)[0]
if self._interrupt:
return None
pos_i = self.model(
[ torch.cat([latent_model_input[:,:-input_ref_images.shape[1]], input_ref_images], dim=1) ], x_id = 1, context = [context_null],**kwargs
)[0]
if self._interrupt:
return None
neg = self.model(
[ torch.cat([latent_model_input[:,:-input_ref_images_neg.shape[1]], input_ref_images_neg], dim=1) ], x_id = 2, context = [context_null], **kwargs
)[0]
if self._interrupt:
return None
else:
noise_pred_cond = self.model(
[latent_model_input], x_id = 0, context = [context], **kwargs)[0]
if self._interrupt:
return None
noise_pred_uncond = self.model(
[latent_model_input], x_id = 1, context = [context_null], **kwargs)[0]
if self._interrupt:
return None
# del latent_model_input
# CFG Zero *. Thanks to https://github.com/WeichenFan/CFG-Zero-star/
if guide_scale == 1:
pass
elif phantom:
guide_scale_img= 5.0
guide_scale_text= guide_scale #7.5
noise_pred = neg + guide_scale_img * (pos_i - neg) + guide_scale_text * (pos_it - pos_i)
else:
noise_pred_text = noise_pred_cond
if cfg_star_switch:
positive_flat = noise_pred_text.view(batch_size, -1)
negative_flat = noise_pred_uncond.view(batch_size, -1)
alpha = optimized_scale(positive_flat,negative_flat)
alpha = alpha.view(batch_size, 1, 1, 1)
if (i <= cfg_zero_step):
noise_pred = noise_pred_text*0. # it would be faster not to compute noise_pred...
else:
noise_pred_uncond *= alpha
noise_pred = noise_pred_uncond + guide_scale * (noise_pred_text - noise_pred_uncond)
noise_pred_uncond, noise_pred_cond, noise_pred_text, pos_it, pos_i, neg = None, None, None, None, None, None
scheduler_kwargs = {} if isinstance(sample_scheduler, FlowMatchScheduler) else {"generator": seed_g}
temp_x0 = sample_scheduler.step(
noise_pred[:, :target_shape[1]].unsqueeze(0),
t,
latents.unsqueeze(0),
# return_dict=False,
**scheduler_kwargs)[0]
latents = temp_x0.squeeze(0)
del temp_x0
if callback is not None:
callback(i, latents, False)
x0 = [latents]
if return_latent_slice != None:
if overlapped_latents != None:
# latents [:, 1:] = self.toto
for zz, zz_r, ll in zip(z, z_reactive, [latents]):
ll[:, 0:overlapped_latents_size + ref_images_count] = zz_r
latent_slice = latents[:, return_latent_slice].clone()
if input_frames == None:
if phantom:
# phantom post processing
x0 = [x0_[:,:-input_ref_images.shape[1]] for x0_ in x0]
videos = self.vae.decode(x0, VAE_tile_size)
else:
# vace post processing
videos = self.decode_latent(x0, input_ref_images, VAE_tile_size)
if return_latent_slice != None:
return { "x" : videos[0], "latent_slice" : latent_slice }
return videos[0]
def adapt_vace_model(self):
model = self.model
modules_dict= { k: m for k, m in model.named_modules()}
for model_layer, vace_layer in model.vace_layers_mapping.items():
module = modules_dict[f"vace_blocks.{vace_layer}"]
target = modules_dict[f"blocks.{model_layer}"]
setattr(target, "vace", module )
delattr(model, "vace_blocks")