Spaces:
Running
Running
File size: 16,179 Bytes
302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 43e1e77 bf7477e 43e1e77 bf7477e 43e1e77 bf7477e 43e1e77 bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 43e1e77 bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e ecb0c64 bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a fa8727c 302961a dd7da0f 3f3bbb0 302961a d5dd064 dd7da0f 302961a bf7477e a5105ee bf7477e 302961a dd7da0f bf7477e 302961a 2a71d55 bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a bf7477e 302961a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
import re
import streamlit as st
import torch
from transformers import PreTrainedTokenizerFast, BartForConditionalGeneration
# Dictionary for SU(3)/SU(2) latex representations
rep_tex_dict = {
"SU3": {"-3": r"\bar{\textbf{3}}", "3": r"\textbf{3}"},
"SU2": {"-2": r"\textbf{2}", "2": r"\textbf{2}", "-3": r"\textbf{3}", "3": r"\textbf{3}"},
}
def fieldobj_to_tex(obj, lor_index, pos):
su3 = None
su2 = None
u1 = None
hel = None
sp = None
obj_mod = obj.copy()
for tok in obj:
if "SU3" in tok:
su3 = tok.split("=")[-1]
obj_mod.remove(tok)
if "SU2" in tok:
su2 = tok.split("=")[-1]
obj_mod.remove(tok)
if "U1" in tok:
u1 = tok.split("=")[-1]
obj_mod.remove(tok)
if "HELICITY" in tok:
hel = tok.split("=")[-1]
if hel == "1":
hel = "+1"
if "SPIN" in tok:
sp = tok.split("=")[-1]
assert sp is not None
outtex = ""
if sp == "0":
outtex += r"\phi"
if sp == "1":
outtex += "A" + pos + lor_index
if sp == "1/2":
outtex += r"\psi"
outtex += r"_{("
# SU(3)
if su3 is not None:
outtex += rep_tex_dict["SU3"].get(su3, r"\textbf{1}") + " ,"
else:
outtex += r"\textbf{1},"
# SU(2)
if su2 is not None:
outtex += rep_tex_dict["SU2"].get(su2, r"\textbf{1}") + " ,"
else:
outtex += r"\textbf{1},"
# U(1)
if u1 is not None:
outtex += u1 + " ,"
else:
outtex += r"\textbf{0},"
# Helicity
if hel is not None:
outtex += "h:" + hel + " ,"
# Finish out subscript
if outtex[-1] == ",":
outtex = outtex[:-1] + ")}"
return outtex
def derobj_to_tex(obj, lor_index, pos):
if pos == "^":
outtex = f"D^{{{lor_index}}}_{{("
elif pos == "_":
outtex = f"D_{{{lor_index}}}^{{("
else:
raise ValueError("pos must be ^ or _")
if "SU3" not in obj and "SU2" not in obj and "U1" not in obj:
# Just partial derivative
if pos == "^":
return f"\\partial^{lor_index}"
else:
return f"\\partial_{lor_index}"
if "SU3" in obj:
outtex += "SU3,"
if "SU2" in obj:
outtex += "SU2,"
if "U1" in obj:
outtex += "U1,"
if outtex[-1] == ",":
outtex = outtex[:-1] + ")}"
return outtex
def gamobj_to_tex(obj, lor_index, pos):
return r"\sigma" + pos + lor_index
def obj_to_tex(obj, lor_index="\mu", pos="^"):
# Convert tuple/strings to a list of tokens
if isinstance(obj, tuple):
obj = list(obj)
if isinstance(obj, str):
obj = [i for i in obj.split(" ") if i != ""]
# Basic tokens
if obj[0] == "+":
return r"\quad\quad+"
if obj[0] == "-":
return r"\quad\quad-"
if obj[0] == "i":
return "i"
# Field
if obj[0] == "FIELD":
return fieldobj_to_tex(obj, lor_index, pos)
# Derivative
if obj[0] == "DERIVATIVE":
return derobj_to_tex(obj, lor_index, pos)
# Sigma (gamma matrices)
if obj[0] == "SIGMA":
return gamobj_to_tex(obj, lor_index, pos)
# Combined COMMUTATOR + DERIVATIVE tokens
if obj[0] == "COMMUTATOR_ADERIVATIVE":
new_obj = obj[:]
new_obj[0] = "DERIVATIVE"
return "[ " + derobj_to_tex(new_obj, lor_index, pos)
if obj[0] == "COMMUTATOR_BDERIVATIVE":
new_obj = obj[:]
new_obj[0] = "DERIVATIVE"
return ", " + derobj_to_tex(new_obj, lor_index, pos) + " ]"
# Single COMMUTATOR tokens
if obj[0] == "COMMUTATOR_A":
return "[ " + derobj_to_tex(obj, lor_index, pos)
if obj[0] == "COMMUTATOR_B":
return ", " + derobj_to_tex(obj, lor_index, pos) + " ]"
# Fallback for unrecognized tokens if you like:
# return f"\\text{{Unhandled}}({obj})"
return ""
def split_with_delimiter_preserved(string, delimiters, ignore_dots=False):
"""
Splits a string using the given delimiters,
while preserving them as separate tokens.
"""
if "." in string and not ignore_dots:
raise ValueError("Unexpected ending to the generated Lagrangian")
pattern = '(' + '|'.join(map(re.escape, delimiters)) + ')'
parts = re.split(pattern, string)
# Turn a lonely "+ " into " + "
parts = [" + " if p == "+ " else p for p in parts]
# Remove empty entries
parts = [p for p in parts if p != ""]
return parts
def clean_split(inlist, delimiters):
"""
Merges an immediate delimiter with its next token
so that "FIELD " + "SPIN" -> "FIELD SPIN".
"""
i = 0
merged_list = []
while i < len(inlist):
if inlist[i] in delimiters:
if i < len(inlist) - 1:
merged_list.append(inlist[i] + inlist[i+1])
i += 1
else:
merged_list.append(inlist[i])
else:
merged_list.append(inlist[i])
i += 1
return merged_list
def get_obj_dict(inlist):
outdict = {}
for iitem in inlist:
idict = {"ID": None, "LATEX": None}
# Find any ID=... string
item_parts = iitem.split()
the_ids = [x for x in item_parts if x.startswith("ID")]
if the_ids:
idict["ID"] = the_ids[0]
# Always compute LATEX from obj_to_tex
idict["LATEX"] = obj_to_tex(iitem, "\\mu", "^")
outdict[iitem] = idict
return outdict
def get_con_dict(inlist):
"""
For a list of 'contractions' tokens, produce
a dictionary of which IDs are to be contracted
under LORENTZ, SU2, or SU3.
"""
outdict = {}
for iitem in inlist:
tokens = iitem.split()
tokens = [t for t in tokens if t != ""]
sym = [t for t in tokens if ("SU" in t or "LORENTZ" in t)]
assert len(sym) == 1, "More than one symmetry in contraction"
ids = [t for t in tokens if ("SU" not in t and "LZ" not in t)]
if sym[0] not in outdict:
outdict[sym[0]] = [ids]
else:
outdict[sym[0]].append(ids)
return outdict
def term_to_tex(term, verbose=True):
"""
Converts one Lagrangian term into its LaTeX representation.
"""
# Clean up certain strings
term = term.replace(".", "").replace(" = ", "=").replace(" =- ", "=-")
term = term.replace(" / ", "/")
term = term.replace("COMMUTATOR_A DERIVATIVE", "COMMUTATOR_ADERIVATIVE")
term = term.replace("COMMUTATOR_B DERIVATIVE", "COMMUTATOR_BDERIVATIVE")
# Split into sub-tokens
term = split_with_delimiter_preserved(
term,
[" FIELD ", " DERIVATIVE ", " SIGMA ", " COMMUTATOR_ADERIVATIVE ", " COMMUTATOR_BDERIVATIVE ", " CONTRACTIONS "]
)
term = clean_split(
term,
[" FIELD ", " DERIVATIVE ", " SIGMA ", " COMMUTATOR_ADERIVATIVE ", " COMMUTATOR_BDERIVATIVE ", " CONTRACTIONS "]
)
if verbose:
print(term)
# If it's just +, -, or i, return that token
if term in [[" + "], [" - "], [" i "]]:
return term[0]
# Build dictionary for objects that aren't in "CONTRACTIONS"
objdict = get_obj_dict([t for t in term if " CONTRACTIONS " not in t])
if verbose:
for k, v in objdict.items():
print(k, "\t\t", v)
# Contractions
contractions = [t for t in term if " CONTRACTIONS " in t]
if len(contractions) > 1:
raise ValueError("More than one contraction in term")
if len(contractions) == 1 and contractions != [" CONTRACTIONS "]:
# e.g. "LORENTZ ID5 ID2", etc.
c_str = contractions[0]
c_str = split_with_delimiter_preserved(c_str, [" LORENTZ ", " SU2 ", " SU3 "])
c_str = clean_split(c_str, [" LORENTZ ", " SU2 ", " SU3 "])
c_str = [i for i in c_str if i != " CONTRACTIONS"]
condict = get_con_dict(c_str)
if verbose:
print(condict)
# LORENTZ contraction handling
if "LORENTZ" in condict:
firstlz = True
cma = True
for con in condict["LORENTZ"]:
for kobj, iobj in objdict.items():
if iobj["ID"] is None:
continue
if iobj["ID"] in con:
if cma:
lsymb = r"\mu"
else:
lsymb = r"\nu"
if firstlz:
iobj["LATEX"] = obj_to_tex(kobj, lsymb, "^")
firstlz = False
else:
iobj["LATEX"] = obj_to_tex(kobj, lsymb, "_")
cma = False
firstlz = True
# Join the final LaTeX strings
outstr = " ".join([objdict[t]["LATEX"] for t in term if " CONTRACTIONS " not in t])
return outstr
def str_tex(instr, num=0):
"""
Convert list of terms into complete LaTeX lines for the Lagrangian.
"""
if num != 0:
instr = instr[:num]
inlist = [term.replace(".", "") for term in instr]
outstr = ""
coup = 0
mass = 0
outstr = r"\begin{aligned}"
for i, iterm in enumerate(inlist):
if i == 0:
outstr += r" \mathcal{L}= \quad \\ & "
else:
# Identify coupling or mass terms by counting spin-0 fields
nqf = iterm.count("FIELD SPIN = 0")
nD = iterm.count(" DERIVATIVE ")
if nqf != 0 and nqf != 2 and nD == 0:
coup += 1
outstr += rf" \lambda_{{{coup}}} \,"
if nqf == 2 and nD == 0:
mass += 1
outstr += rf" m^2_{{{mass}}} \,"
outstr += term_to_tex(iterm, False) + r" \quad "
if i % 4 == 0:
outstr += r" \\ \\ & "
return outstr
def master_str_tex(iinstr):
"""
Master function that splits the incoming string,
tries to render the full Lagrangian,
and catches errors if the model text is truncated.
"""
instr = split_with_delimiter_preserved(iinstr, [" + ", "+ ", " - "])
try:
outstr = str_tex(instr)
except Exception as e:
# If an error occurs, try ignoring the last token
outstr = str_tex(instr, -1)
outstr += " \\cdots"
print(e)
outstr += r"\end{aligned}"
return outstr
# ---------------------------------------------------------------------------------
# Model loading
device = 'cpu'
model_name = "JoseEliel/BART-Lagrangian"
@st.cache_resource
def load_model():
model = BartForConditionalGeneration.from_pretrained(model_name).to(device)
return model
@st.cache_resource
def load_tokenizer():
return PreTrainedTokenizerFast.from_pretrained(model_name)
model = load_model()
hf_tokenizer = load_tokenizer()
# ---------------------------------------------------------------------------------
# Text processing wrappers
def process_input(input_text):
# Sort fields so generation is consistent
input_text = input_text.replace("[SOS]", "").replace("[EOS]", "").replace("FIELD", "SPLITFIELD")
fields = input_text.split("SPLIT")[1:]
fields = [x.strip().split(" ") for x in fields]
fields = sorted(fields)
fields = "[SOS] " + " ".join([" ".join(x) for x in fields]) + " [EOS]"
return fields
def process_output(output_text):
# Remove special tokens from model output
return output_text.replace("[SOS]", "").replace("[EOS]", "").replace(".", "")
def reformat_expression(s):
# e.g. turn SU2= -1 into SU2=-1, remove spaces
return re.sub(r"(SU[23]|U1|SPIN|HEL)\s+([+-]?\s*\d+)",
lambda m: f"{m.group(1)} = {m.group(2).replace(' ', '')}",
s)
def generate_lagrangian(input_text):
"""
Calls the model to produce a Lagrangian for the user-given fields.
"""
input_text = process_input(input_text)
inputs = hf_tokenizer([input_text], return_tensors='pt').to(device)
with st.spinner("Generating Lagrangian..."):
lagrangian_ids = model.generate(inputs['input_ids'], max_length=2048)
lagrangian = hf_tokenizer.decode(lagrangian_ids[0].tolist(), skip_special_tokens=False)
lagrangian = process_output(lagrangian)
return lagrangian
def generate_field(sp, su2, su3, u1):
"""
Builds a single field string with the chosen spin and gauge charges.
"""
components = [f"FIELD SPIN={sp}"]
# For spin = 1/2, optionally add helicity
if sp == "1/2":
components = [f"FIELD SPIN={sp} HEL=1/2"]
if su2 != "$1$":
components.append(f"SU2={su2}")
if su3 == "$\\bar{{3}}$":
components.append("SU3=-3")
elif su3 != "$1$":
components.append(f"SU3={su3.replace('$','')}")
if u1 != "0":
components.append(f"U1={u1}")
return " ".join(components).replace("$", "")
# ---------------------------------------------------------------------------------
# Streamlit GUI
def main():
st.title("$\\mathscr{L}$agrangian Generator")
st.markdown(" ### For a set of chosen fields, this model generates the corresponding Lagrangian which encodes all interactions and dynamics of the fields.")
st.markdown(" #### This is a demo of our [BART](https://arxiv.org/abs/1910.13461)-based model with ca 360M parameters")
st.markdown(" #### Details about the model, training, and evaluation can be found in our [paper](https://arxiv.org/abs/2501.09729).")
st.markdown(" ##### :violet[Due to computational resources, we limit the number of fields to 3. Some features in the LaTeX rendering (such as daggers) are not supported in the current version and helicity is always 1/2 (to be updated).]")
st.markdown(" ##### Choose up to three different fields:")
su2_options = ["$1$", "$2$", "$3$"]
su3_options = ["$1$", "$3$", "$\\bar{3}$"]
u1_options = ["-1", "-2/3", "-1/2", "-1/3", "0", "1/3", "1/2", "2/3", "1"]
spin_options = ["0", "1/2"]
if "count" not in st.session_state:
st.session_state.count = 0
if "field_strings" not in st.session_state:
st.session_state.field_strings = []
with st.form("field_selection"):
spin_selection = st.radio("Select spin value:", spin_options)
su2_selection = st.radio("Select SU(2) value:", su2_options)
su3_selection = st.radio("Select SU(3) value:", su3_options)
u1_selection = st.radio("Select U(1) value:", u1_options)
submitted = st.form_submit_button("Add field")
if submitted:
if st.session_state.count < 3:
fs = generate_field(spin_selection, su2_selection, su3_selection, u1_selection)
st.session_state.field_strings.append(fs)
st.session_state.count += 1
else:
st.write("Maximum of 3 fields for this demo.")
clear_fields = st.button("Clear fields")
if clear_fields:
st.session_state.field_strings = []
st.session_state.count = 0
# Display current fields
st.write("Input Fields:")
for i, fs in enumerate(st.session_state.field_strings, 1):
texfield = obj_to_tex(fs)
st.latex(r"\text{Field " + str(i) + ":} \quad " + texfield)
# Generate Lagrangian button
if st.button("Generate Lagrangian"):
input_fields = " ".join(st.session_state.field_strings)
if input_fields.strip() == "":
st.write("Please add at least one field before generating the Lagrangian.")
return
input_fields = input_fields.replace("=", " ")
input_fields = "[SOS] " + input_fields + " [EOS]"
generated_lagrangian = generate_lagrangian(input_fields)
generated_lagrangian = reformat_expression(generated_lagrangian)
print(generated_lagrangian)
# Attempt to render as LaTeX
latex_output = master_str_tex(generated_lagrangian[1:])
st.latex(latex_output)
st.markdown("### Contact")
st.markdown("For questions/suggestions, email us: [Eliel](mailto:[email protected]) or [Yong Sheng](mailto:[email protected]).")
if __name__ == "__main__":
main() |