Commit
·
db8bba4
1
Parent(s):
f29dbf2
First import.
Browse files- app.py +91 -0
- tiny_doodle_embedding.onnx +3 -0
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import onnxruntime as ort
|
2 |
+
import numpy
|
3 |
+
import gradio as gr
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
ort_sess = ort.InferenceSession('tiny_doodle_embedding_v14.onnx')
|
7 |
+
|
8 |
+
# force reload now!
|
9 |
+
|
10 |
+
def get_bounds(img):
|
11 |
+
# Assumes a BLACK BACKGROUND!
|
12 |
+
# White letters on a black background!
|
13 |
+
left = img.shape[1]
|
14 |
+
right = 0
|
15 |
+
top = img.shape[0]
|
16 |
+
bottom = 0
|
17 |
+
min_color = numpy.min(img)
|
18 |
+
max_color = numpy.max(img)
|
19 |
+
mean_color = 0.5*(min_color+max_color)
|
20 |
+
# Do this the dumb way.
|
21 |
+
for y in range(0, img.shape[0]):
|
22 |
+
for x in range(0, img.shape[1]):
|
23 |
+
if img[y,x] > mean_color:
|
24 |
+
left = min(left, x)
|
25 |
+
right = max(right, x)
|
26 |
+
top = min(top, y)
|
27 |
+
bottom = max(bottom, y)
|
28 |
+
return (top, bottom, left, right)
|
29 |
+
|
30 |
+
def resize_maxpool(img, out_width: int, out_height: int):
|
31 |
+
out = numpy.zeros((out_height, out_width), dtype=img.dtype)
|
32 |
+
scale_factor_y = img.shape[0] // out_height
|
33 |
+
scale_factor_x = img.shape[1] // out_width
|
34 |
+
for y in range(0, out.shape[0]):
|
35 |
+
for x in range(0, out.shape[1]):
|
36 |
+
out[y,x] = numpy.max(img[y*scale_factor_y:(y+1)*scale_factor_y, x*scale_factor_x:(x+1)*scale_factor_x])
|
37 |
+
return out
|
38 |
+
|
39 |
+
def process_input(input_msg):
|
40 |
+
img = input_msg["composite"]
|
41 |
+
# Image is inverted. 255 is white, 0 is what's drawn.
|
42 |
+
img_mean = 0.5 * (numpy.max(img) + numpy.min(img))
|
43 |
+
img = 1.0 * (img < img_mean) # Invert the image and convert to a float.
|
44 |
+
crop_area = get_bounds(img)
|
45 |
+
img = img[crop_area[0]:crop_area[1], crop_area[2]:crop_area[3]]
|
46 |
+
img = resize_maxpool(img, 32, 32)
|
47 |
+
#img_a = numpy.resize(img_a, (32, 32))
|
48 |
+
img = numpy.expand_dims(img, axis=0) # Unsqueeze
|
49 |
+
return img
|
50 |
+
|
51 |
+
|
52 |
+
def compare(input_img_a, input_img_b):
|
53 |
+
text_out = ""
|
54 |
+
|
55 |
+
img_a = process_input(input_img_a)
|
56 |
+
img_b = process_input(input_img_b)
|
57 |
+
|
58 |
+
# We could vcat these and run them in parallel.
|
59 |
+
a_embedding = ort_sess.run(None, {'input': img_a.astype(numpy.float32)})[0]
|
60 |
+
b_embedding = ort_sess.run(None, {'input': img_b.astype(numpy.float32)})[0]
|
61 |
+
a_mag = 1.0#+numpy.dot(a_embedding, a_embedding.T)
|
62 |
+
b_mag = 1.0#+numpy.dot(b_embedding, b_embedding.T)
|
63 |
+
a_embedding /= a_mag
|
64 |
+
b_embedding /= b_mag
|
65 |
+
text_out += f"img_a_embedding: {a_embedding}\n"
|
66 |
+
text_out += f"img_b_embedding: {b_embedding}\n"
|
67 |
+
sim = numpy.dot(a_embedding , b_embedding.T)
|
68 |
+
print(sim)
|
69 |
+
print(text_out)
|
70 |
+
return Image.fromarray(numpy.clip((numpy.hstack([img_a[0], img_b[0]]) * 254), 0, 255).astype(numpy.uint8)), sim[0][0], text_out
|
71 |
+
#return sim[0][0], text_out
|
72 |
+
|
73 |
+
|
74 |
+
demo = gr.Interface(
|
75 |
+
fn=compare,
|
76 |
+
inputs=[
|
77 |
+
gr.Sketchpad(image_mode='L', type='numpy'),
|
78 |
+
gr.Sketchpad(image_mode='L', type='numpy'),
|
79 |
+
#gr.ImageEditor(
|
80 |
+
# width=320, height=320,
|
81 |
+
# canvas_size=(320, 320),
|
82 |
+
# sources = ["upload", "clipboard"], # Webcam
|
83 |
+
# layers=False,
|
84 |
+
# image_mode='L', type='numpy',
|
85 |
+
#),
|
86 |
+
],
|
87 |
+
outputs=["image", "number", "text"],
|
88 |
+
)
|
89 |
+
|
90 |
+
demo.launch(share=True)
|
91 |
+
|
tiny_doodle_embedding.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:398b48fcb1ced8b55d3e99300094f5e8c4974d87a3052d61f92111b44bbd2b5f
|
3 |
+
size 42218748
|