File size: 8,378 Bytes
a86ebfe
074b087
4f600ec
 
 
 
64547bc
074b087
336e489
a86ebfe
336e489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a86ebfe
 
 
 
 
 
 
 
bc97bc5
9ac4891
bc97bc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5f8353
 
 
 
 
 
 
bc97bc5
074b087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0567ede
074b087
 
 
 
 
fc3e5ca
 
 
 
4cf8170
 
 
6391fa4
4cf8170
 
 
 
 
 
 
 
 
 
edc6b13
4cf8170
 
6391fa4
6a544e7
fc3e5ca
 
f6ee10a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
074b087
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import tweepy as tw
import streamlit as st
import pandas as pd
import torch
import numpy as np
import regex as re
import pysentimiento

from pysentimiento.preprocessing import preprocess_tweet

from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from transformers import AutoTokenizer, AutoModelForSequenceClassification,AdamW
tokenizer = AutoTokenizer.from_pretrained('hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021')
model = AutoModelForSequenceClassification.from_pretrained("hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021")

import torch
if torch.cuda.is_available():  
    device = torch.device(	"cuda")
    print('I will use the GPU:', torch.cuda.get_device_name(0))
    
else:
    print('No GPU available, using the CPU instead.')
    device = torch.device("cpu")

    
consumer_key = "BjipwQslVG4vBdy4qK318KnoA"
consumer_secret = "3fzL70v9faklrPgvTi3zbofw9rwk92fgGdtAslFkFYt8kGmqBJ"
access_token = "1217853705086799872-Y5zEChpTeKccuLY3XJRXDPPZhNrlba"
access_token_secret = "pqQ5aFSJxzJ2xnI6yhVtNjQO36FOu8DBOH6DtUrPAU54J"
auth = tw.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tw.API(auth, wait_on_rate_limit=True)

def preprocess(text):
    #text=text.lower()
    # remove hyperlinks
    text = re.sub(r'https?:\/\/.*[\r\n]*', '', text)
    text = re.sub(r'http?:\/\/.*[\r\n]*', '', text)
    #Replace &amp, &lt, &gt with &,<,> respectively
    text=text.replace(r'&amp;?',r'and')
    text=text.replace(r'&lt;',r'<')
    text=text.replace(r'&gt;',r'>')
    #remove hashtag sign
    #text=re.sub(r"#","",text)   
    #remove mentions
    text = re.sub(r"(?:\@)\w+", '', text)
    #text=re.sub(r"@","",text)
    #remove non ascii chars
    text=text.encode("ascii",errors="ignore").decode()
    #remove some puncts (except . ! ?)
    text=re.sub(r'[:"#$%&\*+,-/:;<=>@\\^_`{|}~]+','',text)
    text=re.sub(r'[!]+','!',text)
    text=re.sub(r'[?]+','?',text)
    text=re.sub(r'[.]+','.',text)
    text=re.sub(r"'","",text)
    text=re.sub(r"\(","",text)
    text=re.sub(r"\)","",text)
    text=" ".join(text.split())
    return text

def highlight_survived(s):
    return ['background-color: red']*len(s) if (s.Sexista == 1) else ['background-color: green']*len(s)

def color_survived(val):
    color = 'red' if val=='Sexista' else 'white'
    return f'background-color: {color}'


st.set_page_config(layout="wide")
st.markdown('<style>body{background-color: Blue;}</style>',unsafe_allow_html=True)

colT1,colT2 = st.columns([2,8])
with colT2:
   # st.title('Analisis de comentarios sexistas en Twitter') 
    st.markdown(""" <style> .font {
    font-size:40px ; font-family: 'Cooper Black'; color: #06bf69;} 
    </style> """, unsafe_allow_html=True)
    st.markdown('<p class="font">An谩lisis de comentarios sexistas en Twitter</p>', unsafe_allow_html=True)
    
    st.markdown(""" <style> .font1 {
    font-size:28px ; font-family: 'Times New Roman'; color: #8d33ff;} 
    </style> """, unsafe_allow_html=True)

    st.markdown(""" <style> .font2 {
    font-size:16px ; font-family: 'Times New Roman'; color: #3358ff;} 
    </style> """, unsafe_allow_html=True)

   
def run():   
 with st.form("my_form"):
   col,buff1, buff2 = st.columns([2,2,1])
   st.write("Escoja una Opci贸n")
   search_words = col.text_input("Introduzca el termino o usuario para analizar y pulse el check correspondiente")
   number_of_tweets = col.number_input('Introduzca n煤mero de twweets a analizar. M谩ximo 50', 0,50,10)
   termino=st.checkbox('T茅rmino')
   usuario=st.checkbox('Usuario')
   submit_button = col.form_submit_button(label='Analizar')
   error=False
   if submit_button:
            # Condici贸n para el caso de que esten dos check seleccionados
            if ( termino == False and usuario == False):
                st.text('Error no se ha seleccionado ningun check')
                error=True
            elif ( termino == True and usuario == True):
                st.text('Error se han seleccionado los dos check')
                error=True
                
            if (error == False):
                if (termino):
                    #new_search = search_words + " -filter:retweets"
                    #tweets =tw.Cursor(api.search_tweets,q=new_search,lang="es").items(number_of_tweets)
                    # Tokenizar la frase
                    tokens = tokenizer.tokenize(search_words)
                    # Convertir los tokens a un formato compatible con el modelo
                    input_ids = tokenizer.convert_tokens_to_ids(tokens)
                    attention_masks = [1] * len(input_ids)
                    # Pasar los tokens al modelo
                    outputs = model(torch.tensor([input_ids]), token_type_ids=None, attention_mask=torch.tensor([attention_masks]))
                
                    # Obtener la probabilidad de que la frase sea "sexista"
                    probabilidad_sexista = outputs[0][0][1].item()
                    print(probabilidad_sexista)
                    # Crear un Dataframe
                    text= pd.DataFrame({'palabra': [search_words],'probabilidad':[probabilidad_sexista]})
                    #print(text)
                    st.table(text)
                    #text.plot.bar(y='probabilidad')
                    st.pie_chart(text)
                elif (usuario):
                    tweets = api.user_timeline(screen_name = search_words,count=number_of_tweets)
                    tweet_list = [i.text for i in tweets]
                    text= pd.DataFrame(tweet_list)
                    text[0] = text[0].apply(preprocess_tweet)
                    text1=text[0].values
                    indices1=tokenizer.batch_encode_plus(text1.tolist(),max_length=128,add_special_tokens=True, return_attention_mask=True,pad_to_max_length=True,truncation=True)
                    input_ids1=indices1["input_ids"]
                    attention_masks1=indices1["attention_mask"]
                    prediction_inputs1= torch.tensor(input_ids1)
                    prediction_masks1 = torch.tensor(attention_masks1)
                    # Set the batch size.  
                    batch_size = 25
                    # Create the DataLoader.
                    prediction_data1 = TensorDataset(prediction_inputs1, prediction_masks1)
                    prediction_sampler1 = SequentialSampler(prediction_data1)
                    prediction_dataloader1 = DataLoader(prediction_data1, sampler=prediction_sampler1, batch_size=batch_size)
                    print('Predicting labels for {:,} test sentences...'.format(len(prediction_inputs1)))
                    # Pone el modelo en modo evaluaci贸n
                    model.eval()
                    # Variables de Seguimiento 
                    predictions = []
                    # Predict 
                    for batch in prediction_dataloader1:
                        batch = tuple(t.to(device) for t in batch)
                        # Descomprimir las entradas de nuestro cargador de datos
                        b_input_ids1, b_input_mask1 = batch
                        # Decirle al modelo que no calcule ni almacene gradientes, ahorrando memoria y # acelerando la predicci贸n.
                        with torch.no_grad():
                            # Forward pass, calculate logit predictions
                            outputs1 = model(b_input_ids1, token_type_ids=None,attention_mask=b_input_mask1)
                        logits1 = outputs1[0]
                        # Move logits and labels to CPU
                        logits1 = logits1.detach().cpu().numpy()
                        # Store predictions and true labels
                        predictions.append(logits1)
                    flat_predictions = [item for sublist in predictions for item in sublist]
                    flat_predictions = np.argmax(flat_predictions, axis=1).flatten()#p = [i for i in classifier(tweet_list)]
                    df = pd.DataFrame(list(zip(tweet_list, flat_predictions)),columns =['脷ltimos '+ str(number_of_tweets)+' Tweets'+' de '+search_words, 'Sexista'])
                    df['Sexista']= np.where(df['Sexista']== 0, 'No Sexistas', 'Sexistas')
                    
                    st.table(df.reset_index(drop=True).head(20).style.applymap(color_survived, subset=['Sexista']))

run()