Spaces:
Runtime error
Runtime error
| import tweepy as tw | |
| import streamlit as st | |
| import pandas as pd | |
| import regex as re | |
| import numpy as np | |
| import pysentimiento | |
| import geopy | |
| import matplotlib.pyplot as plt | |
| from pysentimiento.preprocessing import preprocess_tweet | |
| from geopy.geocoders import Nominatim | |
| from transformers import pipeline | |
| model_checkpoint = "hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021" | |
| pipeline_nlp = pipeline("text-classification", model=model_checkpoint) | |
| consumer_key = "BjipwQslVG4vBdy4qK318KnoA" | |
| consumer_secret = "3fzL70v9faklrPgvTi3zbofw9rwk92fgGdtAslFkFYt8kGmqBJ" | |
| access_token = "1217853705086799872-Y5zEChpTeKccuLY3XJRXDPPZhNrlba" | |
| access_token_secret = "pqQ5aFSJxzJ2xnI6yhVtNjQO36FOu8DBOH6DtUrPAU54J" | |
| auth = tw.OAuthHandler(consumer_key, consumer_secret) | |
| auth.set_access_token(access_token, access_token_secret) | |
| api = tw.API(auth, wait_on_rate_limit=True) | |
| def preprocess(text): | |
| #text=text.lower() | |
| # remove hyperlinks | |
| text = re.sub(r'https?:\/\/.*[\r\n]*', '', text) | |
| text = re.sub(r'http?:\/\/.*[\r\n]*', '', text) | |
| #Replace &, <, > with &,<,> respectively | |
| text=text.replace(r'&?',r'and') | |
| text=text.replace(r'<',r'<') | |
| text=text.replace(r'>',r'>') | |
| #remove hashtag sign | |
| #text=re.sub(r"#","",text) | |
| #remove mentions | |
| text = re.sub(r"(?:\@)\w+", '', text) | |
| #text=re.sub(r"@","",text) | |
| #remove non ascii chars | |
| text=text.encode("ascii",errors="ignore").decode() | |
| #remove some puncts (except . ! ?) | |
| text=re.sub(r'[:"#$%&\*+,-/:;<=>@\\^_`{|}~]+','',text) | |
| text=re.sub(r'[!]+','!',text) | |
| text=re.sub(r'[?]+','?',text) | |
| text=re.sub(r'[.]+','.',text) | |
| text=re.sub(r"'","",text) | |
| text=re.sub(r"\(","",text) | |
| text=re.sub(r"\)","",text) | |
| text=" ".join(text.split()) | |
| return text | |
| def highlight_survived(s): | |
| return ['background-color: red']*len(s) if (s.Sexista == 1) else ['background-color: green']*len(s) | |
| def color_survived(val): | |
| color = 'red' if val=='Sexista' else 'white' | |
| return f'background-color: {color}' | |
| st.set_page_config(layout="wide") | |
| st.markdown('<style>body{background-color: Blue;}</style>',unsafe_allow_html=True) | |
| colT1,colT2 = st.columns([2,8]) | |
| with colT2: | |
| # st.title('Analisis de comentarios sexistas en Twitter') | |
| st.markdown(""" <style> .font { | |
| font-size:40px ; font-family: 'Cooper Black'; color: #06bf69;} | |
| </style> """, unsafe_allow_html=True) | |
| st.markdown('<p class="font">Análisis de comentarios sexistas en Twitter</p>', unsafe_allow_html=True) | |
| st.markdown(""" <style> .font1 { | |
| font-size:28px ; font-family: 'Times New Roman'; color: #8d33ff;} | |
| </style> """, unsafe_allow_html=True) | |
| st.markdown(""" <style> .font2 { | |
| font-size:16px ; font-family: 'Times New Roman'; color: #3358ff;} | |
| </style> """, unsafe_allow_html=True) | |
| def analizar_tweets(search_words, number_of_tweets): | |
| tabla = [] | |
| if(number_of_tweets > 0): | |
| tweets = api.user_timeline(screen_name = search_words,tweet_mode="extended", count= number_of_tweets) | |
| result = [] | |
| for tweet in tweets: | |
| if (tweet.full_text.startswith('RT')): | |
| continue | |
| elif not tweet.full_text.strip(): | |
| continue | |
| else: | |
| datos = preprocess(tweet.full_text) | |
| prediction = pipeline_nlp(datos) | |
| for predic in prediction: | |
| etiqueta = {'Tweets': datos,'Prediccion': predic['label'], 'Probabilidad': predic['score']} | |
| result.append(etiqueta) | |
| df = pd.DataFrame(result) | |
| if df.empty: | |
| df['Prediccion'] = np.where( df['Prediccion'] == 'LABEL_1', 'Sexista', 'No Sexista') | |
| df = df[df["Prediccion"] == 'Sexista'] | |
| df = df[df["Probabilidad"] > 0.5] | |
| muestra = st.table(df.reset_index(drop=True).head(30).style.applymap(color_survived, subset=['Prediccion'])) | |
| tabla.append(muestra) | |
| resultado=df.groupby('Prediccion')['Probabilidad'].sum() | |
| colores=["#aae977","#EE3555"] | |
| fig, ax = plt.subplots(figsize=(1, 1), subplotpars=None) | |
| plt.pie(resultado,labels=resultado.index,autopct='%1.1f%%',colors=colores) | |
| ax.set_title("Porcentajes por Categorias", fontsize=1, fontweight="bold") | |
| plt.rcParams.update({'font.size':1, 'font.weight':'bold'}) | |
| ax.legend() | |
| # Muestra el gráfico | |
| plt.show() | |
| st.set_option('deprecation.showPyplotGlobalUse', False) | |
| st.pyplot() | |
| else: | |
| muestra = st.text("No hay tweets a analizar") | |
| tabla.append(muestra) | |
| else: | |
| muestra = st.text("Ingrese la cantidad de tweets") | |
| tabla.append(muestra) | |
| return tabla | |
| def tweets_localidad(buscar_localidad): | |
| tabla = [] | |
| try: | |
| geolocator = Nominatim(user_agent="nombre_del_usuario") | |
| location = geolocator.geocode(buscar_localidad) | |
| radius = "15km" | |
| tweets = api.search_tweets(q="",lang="es",geocode=f"{location.latitude},{location.longitude},{radius}", count = 1000, tweet_mode="extended") | |
| result = [] | |
| for tweet in tweets: | |
| if (tweet.full_text.startswith('RT')): | |
| continue | |
| elif not tweet.full_text.strip: | |
| continue | |
| else: | |
| datos = preprocess(tweet.full_text) | |
| prediction = pipeline_nlp(datos) | |
| for predic in prediction: | |
| etiqueta = {'Tweets': datos,'Prediccion': predic['label'], 'Probabilidad': predic['score']} | |
| result.append(etiqueta) | |
| df = pd.DataFrame(result) | |
| df['Prediccion'] = np.where(df['Prediccion'] == 'LABEL_1', 'Sexista', 'No Sexista') | |
| df = df[df["Prediccion"] == 'Sexista'] | |
| df = df[df["Probabilidad"] > 0.5] | |
| df = df.sort_values(by='Probabilidad', ascending=False) | |
| muestra = st.table(df.reset_index(drop=True).head(5).style.applymap(color_survived, subset=['Prediccion'])) | |
| if df.empty: | |
| st.text("No se encontraron tweets sexistas dentro de la localidad") | |
| else: | |
| tabla.append(muestra) | |
| resultado=df.groupby('Prediccion')['Probabilidad'].sum() | |
| colores=["#aae977","#EE3555"] | |
| fig, ax = plt.subplots() | |
| fig.set_size_inches(3, 2) | |
| plt.pie(resultado,labels=resultado.index,autopct='%1.1f%%',colors=colores) | |
| ax.set_title("Porcentajes por Categorias", fontsize=4, fontweight="bold") | |
| plt.rcParams.update({'font.size':4, 'font.weight':'bold'}) | |
| ax.legend() | |
| # Muestra el gráfico | |
| plt.show() | |
| st.set_option('deprecation.showPyplotGlobalUse', False) | |
| st.pyplot() | |
| except AttributeError: | |
| st.text("No existe ninguna localidad con ese nombre") | |
| return tabla | |
| def analizar_frase(frase): | |
| if frase == "": | |
| predictions = pipeline_nlp(frase) | |
| # convierte las predicciones en una lista de diccionarios | |
| data = [{'Texto': frase, 'Prediccion': prediction['label'], 'Probabilidad': prediction['score']} for prediction in predictions] | |
| # crea un DataFrame a partir de la lista de diccionarios | |
| df = pd.DataFrame(data) | |
| df['Prediccion'] = np.where( df['Prediccion'] == 'LABEL_1', 'Sexista', 'No Sexista') | |
| # muestra el DataFrame | |
| tabla = st.table(df.reset_index(drop=True).head(5).style.applymap(color_survived, subset=['Prediccion'])) | |
| else: | |
| tabla = st.text("Ingrese una frase") | |
| return tabla | |
| def run(): | |
| with st.form("my_form"): | |
| col,buff1, buff2 = st.columns([2,2,1]) | |
| st.write("Escoja una Opción") | |
| search_words = col.text_input("Introduzca la frase, el usuario o localidad para analizar y pulse el check correspondiente") | |
| number_of_tweets = col.number_input('Introduzca número de tweets a analizar. Máximo 50', 0,50,0) | |
| termino=st.checkbox('Frase') | |
| usuario=st.checkbox('Usuario') | |
| localidad=st.checkbox('Localidad') | |
| submit_button = col.form_submit_button(label='Analizar') | |
| error =False | |
| if submit_button: | |
| # Condición para el caso de que esten dos check seleccionados | |
| if ( termino == False and usuario == False and localidad == False): | |
| st.text('Error no se ha seleccionado ningun check') | |
| error=True | |
| elif ( termino == True and usuario == True and localidad == True): | |
| st.text('Error se han seleccionado varios check') | |
| error=True | |
| if (error == False): | |
| if (termino): | |
| analizar_frase(search_words) | |
| elif (usuario): | |
| analizar_tweets(search_words,number_of_tweets) | |
| elif (localidad): | |
| tweets_localidad(search_words) | |
| run() |