Spaces:
Runtime error
Runtime error
| import tweepy as tw | |
| import streamlit as st | |
| import pandas as pd | |
| import torch | |
| import numpy as np | |
| import regex as re | |
| import pysentimiento | |
| import geopy | |
| import matplotlib.pyplot as plt | |
| from pysentimiento.preprocessing import preprocess_tweet | |
| from geopy.geocoders import Nominatim | |
| from transformers import pipeline | |
| from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification,AdamW | |
| tokenizer = AutoTokenizer.from_pretrained('hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021') | |
| model = AutoModelForSequenceClassification.from_pretrained("hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021") | |
| model_checkpoint = "hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021" | |
| pipeline_nlp = pipeline("text-classification", model=model_checkpoint) | |
| import torch | |
| if torch.cuda.is_available(): | |
| device = torch.device( "cuda") | |
| print('I will use the GPU:', torch.cuda.get_device_name(0)) | |
| else: | |
| print('No GPU available, using the CPU instead.') | |
| device = torch.device("cpu") | |
| consumer_key = "BjipwQslVG4vBdy4qK318KnoA" | |
| consumer_secret = "3fzL70v9faklrPgvTi3zbofw9rwk92fgGdtAslFkFYt8kGmqBJ" | |
| access_token = "1217853705086799872-Y5zEChpTeKccuLY3XJRXDPPZhNrlba" | |
| access_token_secret = "pqQ5aFSJxzJ2xnI6yhVtNjQO36FOu8DBOH6DtUrPAU54J" | |
| auth = tw.OAuthHandler(consumer_key, consumer_secret) | |
| auth.set_access_token(access_token, access_token_secret) | |
| api = tw.API(auth, wait_on_rate_limit=True) | |
| def preprocess(text): | |
| #text=text.lower() | |
| # remove hyperlinks | |
| text = re.sub(r'https?:\/\/.*[\r\n]*', '', text) | |
| text = re.sub(r'http?:\/\/.*[\r\n]*', '', text) | |
| #Replace &, <, > with &,<,> respectively | |
| text=text.replace(r'&?',r'and') | |
| text=text.replace(r'<',r'<') | |
| text=text.replace(r'>',r'>') | |
| #remove hashtag sign | |
| #text=re.sub(r"#","",text) | |
| #remove mentions | |
| text = re.sub(r"(?:\@)\w+", '', text) | |
| #text=re.sub(r"@","",text) | |
| #remove non ascii chars | |
| text=text.encode("ascii",errors="ignore").decode() | |
| #remove some puncts (except . ! ?) | |
| text=re.sub(r'[:"#$%&\*+,-/:;<=>@\\^_`{|}~]+','',text) | |
| text=re.sub(r'[!]+','!',text) | |
| text=re.sub(r'[?]+','?',text) | |
| text=re.sub(r'[.]+','.',text) | |
| text=re.sub(r"'","",text) | |
| text=re.sub(r"\(","",text) | |
| text=re.sub(r"\)","",text) | |
| text=" ".join(text.split()) | |
| return text | |
| def highlight_survived(s): | |
| return ['background-color: red']*len(s) if (s.Sexista == 1) else ['background-color: green']*len(s) | |
| def color_survived(val): | |
| color = 'red' if val=='Sexista' else 'white' | |
| return f'background-color: {color}' | |
| st.set_page_config(layout="wide") | |
| st.markdown('<style>body{background-color: Blue;}</style>',unsafe_allow_html=True) | |
| colT1,colT2 = st.columns([2,8]) | |
| with colT2: | |
| # st.title('Analisis de comentarios sexistas en Twitter') | |
| st.markdown(""" <style> .font { | |
| font-size:40px ; font-family: 'Cooper Black'; color: #06bf69;} | |
| </style> """, unsafe_allow_html=True) | |
| st.markdown('<p class="font">Análisis de comentarios sexistas en Twitter</p>', unsafe_allow_html=True) | |
| st.markdown(""" <style> .font1 { | |
| font-size:28px ; font-family: 'Times New Roman'; color: #8d33ff;} | |
| </style> """, unsafe_allow_html=True) | |
| st.markdown(""" <style> .font2 { | |
| font-size:16px ; font-family: 'Times New Roman'; color: #3358ff;} | |
| </style> """, unsafe_allow_html=True) | |
| def analizar_tweets(search_words, number_of_tweets ): | |
| tweets = api.user_timeline(screen_name = search_words,tweet_mode="extended", count= number_of_tweets) | |
| tweet_list = [i.full_text for i in tweets] | |
| text= pd.DataFrame(tweet_list) | |
| text[0] = text[0].apply(preprocess_tweet) | |
| text_list = text[0].tolist() | |
| result = [] | |
| for text in text_list: | |
| if (text.startswith('RT')): | |
| continue | |
| else: | |
| prediction = pipeline_nlp(text) | |
| for predic in prediction: | |
| etiqueta = {'Tweets': text,'Prediccion': predic['label'], 'Probabilidad': predic['score']} | |
| result.append(etiqueta) | |
| df = pd.DataFrame(result) | |
| df['Prediccion'] = np.where( df['Prediccion'] == 'LABEL_1', 'Sexista', 'No Sexista') | |
| tabla = st.table(df.reset_index(drop=True).head(30).style.applymap(color_survived, subset=['Prediccion'])) | |
| return tabla | |
| def analizar_frase(frase): | |
| #palabra = frase.split() | |
| #palabra = frase | |
| predictions = pipeline_nlp(frase) | |
| # convierte las predicciones en una lista de diccionarios | |
| data = [{'Texto': frase, 'Prediccion': prediction['label'], 'Probabilidad': prediction['score']} for prediction in predictions] | |
| # crea un DataFrame a partir de la lista de diccionarios | |
| df = pd.DataFrame(data) | |
| df['Prediccion'] = np.where( df['Prediccion'] == 'LABEL_1', 'Sexista', 'No Sexista') | |
| # muestra el DataFrame | |
| #st.table(df.reset_index(drop=True).head(30).style.applymap(color_survived, subset=['Prediccion'])) | |
| tabla = st.table(df.reset_index(drop=True).head(30).style.applymap(color_survived, subset=['Prediccion'])) | |
| return tabla | |
| def tweets_localidad(buscar_localidad): | |
| try: | |
| geolocator = Nominatim(user_agent="nombre_del_usuario") | |
| location = geolocator.geocode(buscar_localidad) | |
| radius = "10km" | |
| tweets = api.search_tweets(q="",lang="es",geocode=f"{location.latitude},{location.longitude},{radius}", count = 50, tweet_mode="extended") | |
| except AttributeError: | |
| st.text("No existe ninguna localidad con ese nombre") | |
| tweet_list = [i.full_text for i in tweets] | |
| text= pd.DataFrame(tweet_list) | |
| text[0] = text[0].apply(preprocess_tweet) | |
| text_list = text[0].tolist() | |
| result = [] | |
| for text in text_list: | |
| if (text.startswith('RT')): | |
| continue | |
| else: | |
| prediction = pipeline_nlp(text) | |
| for predic in prediction: | |
| etiqueta = {'Tweets': text,'Prediccion': predic['label'], 'Probabilidad': predic['score']} | |
| result.append(etiqueta) | |
| df = pd.DataFrame(result) | |
| df['Prediccion'] = np.where( df['Prediccion'] == 'LABEL_1', 'Sexista', 'No Sexista') | |
| #tabla = st.table(df.reset_index(drop=True).head(30).style.applymap(color_survived, subset=['Prediccion'])) | |
| #df['Tweets'] = df['Tweets'].str.replace('RT|@', '') | |
| df=df[df["Prediccion"] == 'Sexista'] | |
| tabla = st.table(df.reset_index(drop=True).head(50).style.applymap(color_survived, subset=['Prediccion'])) | |
| df_sexista = df[df['Prediccion']=="Sexista"] | |
| df_no_sexista = df[df['Probabilidad'] > 0] | |
| sexista = len(df_sexista) | |
| no_sexista = len(df_no_sexista) | |
| # Crear un gráfico de barras | |
| labels = ['Sexista ', ' No sexista'] | |
| counts = [sexista, no_sexista] | |
| plt.bar(labels, counts) | |
| plt.xlabel('Categoría') | |
| plt.ylabel('Cantidad de tweets') | |
| plt.title('Cantidad de tweets sexistas y no sexistas') | |
| plt.figure(figsize=(10,6)) | |
| plt.show() | |
| st.pyplot() | |
| st.set_option('deprecation.showPyplotGlobalUse', False) | |
| return tabla | |
| def run(): | |
| with st.form("my_form"): | |
| col,buff1, buff2 = st.columns([2,2,1]) | |
| st.write("Escoja una Opción") | |
| search_words = col.text_input("Introduzca el termino, usuario o localidad para analizar y pulse el check correspondiente") | |
| number_of_tweets = col.number_input('Introduzca número de tweets a analizar. Máximo 50', 0,50,0) | |
| termino=st.checkbox('Término') | |
| usuario=st.checkbox('Usuario') | |
| localidad=st.checkbox('Localidad') | |
| submit_button = col.form_submit_button(label='Analizar') | |
| error =False | |
| if submit_button: | |
| # Condición para el caso de que esten dos check seleccionados | |
| if ( termino == False and usuario == False and localidad == False): | |
| st.text('Error no se ha seleccionado ningun check') | |
| error=True | |
| elif ( termino == True and usuario == True and localidad == True): | |
| st.text('Error se han seleccionado varios check') | |
| error=True | |
| if (error == False): | |
| if (termino): | |
| analizar_frase(search_words) | |
| elif (usuario): | |
| analizar_tweets(search_words,number_of_tweets) | |
| elif (localidad): | |
| tweets_localidad(search_words) | |
| run() |