Spaces:
Running
on
Zero
Running
on
Zero
Avijit Ghosh
commited on
Commit
·
85b09dd
1
Parent(s):
ad93a8b
Add SD2
Browse files
app.py
CHANGED
|
@@ -1,6 +1,13 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from diffusers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 5 |
from pathlib import Path
|
| 6 |
from safetensors.torch import load_file
|
|
@@ -54,7 +61,14 @@ def load_model(model_name):
|
|
| 54 |
elif model_name == "stabilityai/stable-diffusion-3-medium-diffusers":
|
| 55 |
pipeline = StableDiffusion3Pipeline.from_pretrained(
|
| 56 |
model_name,
|
| 57 |
-
torch_dtype=torch.float16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
).to("cuda")
|
| 59 |
else:
|
| 60 |
raise ValueError("Unknown model name")
|
|
@@ -77,6 +91,8 @@ def getimgen(prompt, model_name):
|
|
| 77 |
return pipeline_text2image(prompt=prompt, negative_prompt=neg_prompt).images[0]
|
| 78 |
elif model_name == "stabilityai/stable-diffusion-3-medium-diffusers":
|
| 79 |
return pipeline_text2image(prompt=prompt, negative_prompt="", num_inference_steps=28, guidance_scale=7.0).images[0]
|
|
|
|
|
|
|
| 80 |
|
| 81 |
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
| 82 |
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda")
|
|
@@ -167,7 +183,8 @@ This demo provides an insightful look into how current text-to-image models hand
|
|
| 167 |
choices=[
|
| 168 |
"stabilityai/stable-diffusion-3-medium-diffusers",
|
| 169 |
"stabilityai/sdxl-turbo",
|
| 170 |
-
"ByteDance/SDXL-Lightning",
|
|
|
|
| 171 |
"runwayml/stable-diffusion-v1-5",
|
| 172 |
"segmind/SSD-1B"
|
| 173 |
],
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from diffusers import (
|
| 4 |
+
DiffusionPipeline,
|
| 5 |
+
StableDiffusionPipeline,
|
| 6 |
+
StableDiffusionXLPipeline,
|
| 7 |
+
EulerDiscreteScheduler,
|
| 8 |
+
UNet2DConditionModel,
|
| 9 |
+
StableDiffusion3Pipeline
|
| 10 |
+
)
|
| 11 |
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 12 |
from pathlib import Path
|
| 13 |
from safetensors.torch import load_file
|
|
|
|
| 61 |
elif model_name == "stabilityai/stable-diffusion-3-medium-diffusers":
|
| 62 |
pipeline = StableDiffusion3Pipeline.from_pretrained(
|
| 63 |
model_name,
|
| 64 |
+
torch_dtype=torch.float16
|
| 65 |
+
).to("cuda")
|
| 66 |
+
elif model_name == "stabilityai/stable-diffusion-2":
|
| 67 |
+
scheduler = EulerDiscreteScheduler.from_pretrained(model_name, subfolder="scheduler")
|
| 68 |
+
pipeline = StableDiffusionPipeline.from_pretrained(
|
| 69 |
+
model_name,
|
| 70 |
+
scheduler=scheduler,
|
| 71 |
+
torch_dtype=torch.float16
|
| 72 |
).to("cuda")
|
| 73 |
else:
|
| 74 |
raise ValueError("Unknown model name")
|
|
|
|
| 91 |
return pipeline_text2image(prompt=prompt, negative_prompt=neg_prompt).images[0]
|
| 92 |
elif model_name == "stabilityai/stable-diffusion-3-medium-diffusers":
|
| 93 |
return pipeline_text2image(prompt=prompt, negative_prompt="", num_inference_steps=28, guidance_scale=7.0).images[0]
|
| 94 |
+
elif model_name == "stabilityai/stable-diffusion-2":
|
| 95 |
+
return pipeline_text2image(prompt=prompt).images[0]
|
| 96 |
|
| 97 |
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
| 98 |
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda")
|
|
|
|
| 183 |
choices=[
|
| 184 |
"stabilityai/stable-diffusion-3-medium-diffusers",
|
| 185 |
"stabilityai/sdxl-turbo",
|
| 186 |
+
"ByteDance/SDXL-Lightning",
|
| 187 |
+
"stabilityai/stable-diffusion-2",
|
| 188 |
"runwayml/stable-diffusion-v1-5",
|
| 189 |
"segmind/SSD-1B"
|
| 190 |
],
|