# import gradio as gr | |
# print('hello') | |
# import torch | |
# print('sdfsdf') | |
# def greet(sentiment): | |
# return "Hello " + sentiment + "!!" | |
# iface = gr.Interface(fn=greet, inputs="text", outputs="text") | |
# iface.launch() | |
import gradio as gr | |
from NeuralTextGenerator import BertTextGenerator | |
# from transformers import pipeline | |
# generator = pipeline("sentiment-analysis") | |
# print('dfg') | |
model_name = "cardiffnlp/twitter-xlm-roberta-base" #"dbmdz/bert-base-italian-uncased" | |
en_model = BertTextGenerator(model_name) | |
tokenizer = en_model.tokenizer | |
model = en_model.model | |
device = model.device | |
en_model.tokenizer.add_special_tokens({'additional_special_tokens': [ | |
'[POSITIVE-0]', | |
'[POSITIVE-1]', | |
'[POSITIVE-2]', | |
'[NEGATIVE-0]', | |
'[NEGATIVE-1]', | |
'[NEGATIVE-2]']}) | |
en_model.model.resize_token_embeddings(len(en_model.tokenizer)) | |
# def classify(sentiment): | |
# parameters = {'n_sentences': 1, | |
# 'batch_size': 2, | |
# 'avg_len':30, | |
# 'max_len':50, | |
# # 'std_len' : 3, | |
# 'generation_method':'parallel', | |
# 'sample': True, | |
# 'burnin': 450, | |
# 'max_iter': 100, | |
# 'top_k': 100, | |
# 'seed_text': f"[{sentiment}-0] [{sentiment}-1] [{sentiment}-2] Ronaldo", | |
# # 'verbose': True | |
# } | |
# sents = en_model.generate(**parameters) | |
# gen_text = '' | |
# for i, s in enumerate(sents): | |
# gen_text += f'- GENERATED TWEET #{i}: {s}\n' | |
# return gen_text | |
# demo = gr.Blocks() | |
# with demo: | |
# gr.Markdown() | |
# inputs = gr.Radio(["POSITIVE", "NEGATIVE"], label="Sentiment to generate") # gr.Dropdown(["POSITIVE", "NEGATIVE"], label="Sentiment to generate") | |
# output = gr.Textbox(label="Generated tweet") | |
# b1 = gr.Button("Generate") | |
# b1.click(classify, inputs=inputs, outputs=output) | |
def sentence_builder(n_sentences, max_iter, sentiment, seed_text): | |
parameters = {'n_sentences': n_sentences, | |
'batch_size': 2, | |
'avg_len':30, | |
'max_len':50, | |
# 'std_len' : 3, | |
'generation_method':'parallel', | |
'sample': True, | |
'burnin': 450, | |
'max_iter': max_iter, | |
'top_k': 100, | |
'seed_text': f"[{sentiment}-0] [{sentiment}-1] [{sentiment}-2] {seed_text}", | |
'verbose': True | |
} | |
sents = en_model.generate(**parameters) | |
gen_text = '' | |
for i, s in enumerate(sents): | |
gen_text += f'- GENERATED TWEET #{i}: {s}\n' | |
return gen_text | |
# return f"""The {quantity} {animal}s from {" and ".join(countries)} went to the {place} where they {" and ".join(activity_list)} until the {"morning" if morning else "night"}""" | |
demo = gr.Interface( | |
sentence_builder, | |
[ | |
gr.Slider(1, 15, value=2, label="Num. Tweets", step=1, info="Number of tweets to be generated."), | |
gr.Slider(50, 500, value=100, label="Max. iter", info="Maximum number of iterations for the generation."), | |
gr.Radio(["POSITIVE", "NEGATIVE"], label="Sentiment to generate"), | |
gr.Textbox('', label="Seed text", info="Seed text for the generation.") | |
], | |
"text", | |
) | |
demo.launch() |