Spaces:
Sleeping
Sleeping
feat: init
Browse files- app.py +169 -0
- requirements.txt +2 -0
- tokenizer/.DS_Store +0 -0
- tokenizer/merges.txt +0 -0
- tokenizer/preprocessor_config.json +19 -0
- tokenizer/special_tokens_map.json +1 -0
- tokenizer/tokenizer.json +0 -0
- tokenizer/tokenizer_config.json +1 -0
- tokenizer/vocab.json +0 -0
app.py
ADDED
|
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from PIL import Image
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import requests
|
| 4 |
+
from transformers import CLIPProcessor, CLIPModel, pipeline, BlipProcessor, BlipForConditionalGeneration
|
| 5 |
+
|
| 6 |
+
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
| 7 |
+
processor = CLIPProcessor.from_pretrained("tokenizer")
|
| 8 |
+
vqa_pipeline = pipeline("visual-question-answering")
|
| 9 |
+
|
| 10 |
+
space_type_labels = ["living room", "bedroom", "kitchen", "terrace", "closet","bathroom", "dining room", "office", "garage", "garden",
|
| 11 |
+
"balcony", "attic", "hallway", "laundry room","home gym", "playroom", "storage room", "studio","is_exterior","empty_interior_room","others"]
|
| 12 |
+
|
| 13 |
+
equipment_questions = [
|
| 14 |
+
"Does the image show outdoor furniture?",
|
| 15 |
+
"Does the image show a parasol?",
|
| 16 |
+
"Does the image show a pergola?",
|
| 17 |
+
"Does the image show a grill?",
|
| 18 |
+
"Does the image show a heater?",
|
| 19 |
+
"Does the image show outdoor lighting?",
|
| 20 |
+
"Does the image show planters?",
|
| 21 |
+
"Does the image show water features?",
|
| 22 |
+
"Does the image show floor coverings?",
|
| 23 |
+
"Does the image show decorative items?",
|
| 24 |
+
"Does the image show entertainment equipment?",
|
| 25 |
+
"Does the image show protective materials?"
|
| 26 |
+
]
|
| 27 |
+
|
| 28 |
+
weights = {
|
| 29 |
+
"Does the image show outdoor furniture?": 0.15,
|
| 30 |
+
"Does the image show a parasol?": 0.05,
|
| 31 |
+
"Does the image show a pergola?": 0.1,
|
| 32 |
+
"Does the image show a grill?": 0.15,
|
| 33 |
+
"Does the image show a heater?": 0.1,
|
| 34 |
+
"Does the image show outdoor lighting?": 0.1,
|
| 35 |
+
"Does the image show planters?": 0.05,
|
| 36 |
+
"Does the image show water features?": 0.1,
|
| 37 |
+
"Does the image show floor coverings?": 0.05,
|
| 38 |
+
"Does the image show decorative items?": 0.05,
|
| 39 |
+
"Does the image show entertainment equipment?": 0.05,
|
| 40 |
+
"Does the image show protective materials?": 0.05
|
| 41 |
+
}
|
| 42 |
+
|
| 43 |
+
luminosity_classes = [
|
| 44 |
+
'A picture of a room filled with abundant natural light with a lot or few windows or a great balcony regardless of whether it is night, without objects that prevent the light from passing through.',
|
| 45 |
+
'a picture of room in the dark',
|
| 46 |
+
'A picture of a room with Artificial lights like lamps or headlamps'
|
| 47 |
+
]
|
| 48 |
+
luminosity_labels = ['natural_light', 'no_light', 'artificial_light']
|
| 49 |
+
|
| 50 |
+
view_questions = [
|
| 51 |
+
"Is this a panoramic view?",
|
| 52 |
+
"Is this a city view?",
|
| 53 |
+
"Is this a view of greenery?",
|
| 54 |
+
"Is this a mountain view?",
|
| 55 |
+
"Is this a view of the sea?"
|
| 56 |
+
]
|
| 57 |
+
view_labels = ['panoramic', 'city', 'greenery', 'mountain', 'sea']
|
| 58 |
+
|
| 59 |
+
certainty_classes = ['windows, balcony or terrace with a view outwards','Exterior appearance of a house or apartment','unreal image or fake of any view']
|
| 60 |
+
|
| 61 |
+
render_classes = ['is_unrealistic_image_render', 'is_image_real']
|
| 62 |
+
|
| 63 |
+
threshold = 0
|
| 64 |
+
|
| 65 |
+
def calculate_equipment_score(image_results, weights):
|
| 66 |
+
score = sum(weights[question] for question, present in image_results.items() if present)
|
| 67 |
+
return score
|
| 68 |
+
|
| 69 |
+
def calculate_luminosity_score(processed_image):
|
| 70 |
+
inputs = processor(text=luminosity_classes, images=processed_image, return_tensors="pt", padding=True)
|
| 71 |
+
outputs = model(**inputs)
|
| 72 |
+
logits_per_image = outputs.logits_per_image
|
| 73 |
+
probs = logits_per_image.softmax(dim=1)
|
| 74 |
+
probabilities_list = probs.squeeze().tolist()
|
| 75 |
+
luminosity_score = {class_name: probability for class_name, probability in zip(luminosity_labels, probabilities_list)}
|
| 76 |
+
return luminosity_score
|
| 77 |
+
|
| 78 |
+
def calculate_space_type(processed_image):
|
| 79 |
+
inputs = processor(text=space_type_labels, images=processed_image, return_tensors="pt", padding=True)
|
| 80 |
+
outputs = model(**inputs)
|
| 81 |
+
logits_per_image = outputs.logits_per_image
|
| 82 |
+
probs = logits_per_image.softmax(dim=1)
|
| 83 |
+
probabilities_list = probs.squeeze().tolist()
|
| 84 |
+
space_type_score = {class_name: probability for class_name, probability in zip(space_type_labels, probabilities_list)}
|
| 85 |
+
return space_type_score
|
| 86 |
+
|
| 87 |
+
def certainty(processed_image):
|
| 88 |
+
inputs = processor(text=certainty_classes, images=processed_image, return_tensors="pt", padding=True)
|
| 89 |
+
outputs = model(**inputs)
|
| 90 |
+
logits_per_image = outputs.logits_per_image
|
| 91 |
+
probs = logits_per_image.softmax(dim=1)
|
| 92 |
+
probabilities_list = probs.squeeze().tolist()
|
| 93 |
+
is_fake_score = {class_name: probability for class_name, probability in zip(certainty_classes, probabilities_list)}
|
| 94 |
+
return is_fake_score
|
| 95 |
+
|
| 96 |
+
def views(processed_image):
|
| 97 |
+
inputs = processor(text=view_questions, images=processed_image, return_tensors="pt", padding=True)
|
| 98 |
+
outputs = model(**inputs)
|
| 99 |
+
logits_per_image = outputs.logits_per_image
|
| 100 |
+
probs = logits_per_image.softmax(dim=1)
|
| 101 |
+
probabilities_list = probs.squeeze().tolist()
|
| 102 |
+
views_score = {class_name: probability for class_name, probability in zip(view_labels, probabilities_list)}
|
| 103 |
+
return views_score
|
| 104 |
+
|
| 105 |
+
def calculate_is_render(processed_image):
|
| 106 |
+
render_inputs = processor(text=render_classes, images=processed_image, return_tensors="pt", padding=True)
|
| 107 |
+
render_outputs = model(**render_inputs)
|
| 108 |
+
render_logits = render_outputs.logits_per_image
|
| 109 |
+
render_probs = render_logits.softmax(dim=1)
|
| 110 |
+
render_probabilities_list = render_probs.squeeze().tolist()
|
| 111 |
+
render_score = {class_name: probability for class_name, probability in zip(render_classes, render_probabilities_list)}
|
| 112 |
+
is_render_prob = render_score['is_unrealistic_image_render']
|
| 113 |
+
return is_render_prob
|
| 114 |
+
|
| 115 |
+
def generate_answer(image):
|
| 116 |
+
|
| 117 |
+
processed_image = image
|
| 118 |
+
|
| 119 |
+
image_data = {
|
| 120 |
+
"image_context": None,
|
| 121 |
+
"equipment_score": None,
|
| 122 |
+
"luminosity_score": None,
|
| 123 |
+
"view_type": {"views": None, "certainty_score": None}
|
| 124 |
+
}
|
| 125 |
+
|
| 126 |
+
space_type_score = calculate_space_type(processed_image)
|
| 127 |
+
max_space_type = max(space_type_score, key=space_type_score.get)
|
| 128 |
+
if space_type_score[max_space_type] >= threshold:
|
| 129 |
+
space_type = max_space_type.lower()
|
| 130 |
+
if space_type == "patio":
|
| 131 |
+
space_type = "terrace"
|
| 132 |
+
image_data["image_context"] = space_type
|
| 133 |
+
|
| 134 |
+
image_results = {}
|
| 135 |
+
if image_data["image_context"] == "terrace":
|
| 136 |
+
for question in equipment_questions:
|
| 137 |
+
result = vqa_pipeline(processed_image, question, top_k=1)
|
| 138 |
+
answer = result[0]['answer'].lower() == "yes"
|
| 139 |
+
image_results[question] = answer
|
| 140 |
+
equipment_score = calculate_equipment_score(image_results, weights)
|
| 141 |
+
image_data["equipment_score"] = equipment_score
|
| 142 |
+
|
| 143 |
+
luminosity_score = calculate_luminosity_score(processed_image)
|
| 144 |
+
image_data["luminosity_score"] = luminosity_score['natural_light']
|
| 145 |
+
|
| 146 |
+
view = views(processed_image)
|
| 147 |
+
image_data["view_type"]["views"] = view
|
| 148 |
+
|
| 149 |
+
certainty_score = certainty(processed_image)
|
| 150 |
+
certainty_score = list(certainty_score.values())[0]
|
| 151 |
+
image_data["view_type"]["certainty_score"] = certainty_score
|
| 152 |
+
|
| 153 |
+
is_render = calculate_is_render(processed_image)
|
| 154 |
+
image_data["is_render"] = is_render
|
| 155 |
+
|
| 156 |
+
return image_data
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
image_input = gr.Image(type="pil", label="Upload Image")
|
| 160 |
+
|
| 161 |
+
iface = gr.Interface(
|
| 162 |
+
fn=generate_answer,
|
| 163 |
+
inputs=[image_input],
|
| 164 |
+
outputs="text",
|
| 165 |
+
title="Vision intelligence",
|
| 166 |
+
description="Upload an image"
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
accelerate
|
tokenizer/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
tokenizer/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer/preprocessor_config.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"crop_size": 224,
|
| 3 |
+
"do_center_crop": true,
|
| 4 |
+
"do_normalize": true,
|
| 5 |
+
"do_resize": true,
|
| 6 |
+
"feature_extractor_type": "CLIPFeatureExtractor",
|
| 7 |
+
"image_mean": [
|
| 8 |
+
0.48145466,
|
| 9 |
+
0.4578275,
|
| 10 |
+
0.40821073
|
| 11 |
+
],
|
| 12 |
+
"image_std": [
|
| 13 |
+
0.26862954,
|
| 14 |
+
0.26130258,
|
| 15 |
+
0.27577711
|
| 16 |
+
],
|
| 17 |
+
"resample": 3,
|
| 18 |
+
"size": 224
|
| 19 |
+
}
|
tokenizer/special_tokens_map.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"bos_token": {"content": "<|startoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "pad_token": "<|endoftext|>"}
|
tokenizer/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer/tokenizer_config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "<|startoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "pad_token": "<|endoftext|>", "add_prefix_space": false, "errors": "replace", "do_lower_case": true, "name_or_path": "./clip_ViT_B_32/", "model_max_length": 77}
|
tokenizer/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|