Spaces:
Runtime error
Runtime error
Julio Cesar Contreras Huerta
commited on
Commit
·
1a0754f
1
Parent(s):
e6039dd
XCVXZCV
Browse files- app.py +80 -203
- evaluate.py +34 -0
app.py
CHANGED
@@ -1,204 +1,81 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
import
|
4 |
-
|
5 |
-
from huggingface_hub import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
)
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
)
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
(
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
),
|
83 |
-
ColumnFilter(
|
84 |
-
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
|
85 |
-
),
|
86 |
-
],
|
87 |
-
bool_checkboxgroup_label="Hide models",
|
88 |
-
interactive=False,
|
89 |
-
)
|
90 |
-
|
91 |
-
|
92 |
-
demo = gr.Blocks(css=custom_css)
|
93 |
-
with demo:
|
94 |
-
gr.HTML(TITLE)
|
95 |
-
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
96 |
-
|
97 |
-
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
98 |
-
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
99 |
-
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
100 |
-
|
101 |
-
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
102 |
-
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
103 |
-
|
104 |
-
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
105 |
-
with gr.Column():
|
106 |
-
with gr.Row():
|
107 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
108 |
-
|
109 |
-
with gr.Column():
|
110 |
-
with gr.Accordion(
|
111 |
-
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
112 |
-
open=False,
|
113 |
-
):
|
114 |
-
with gr.Row():
|
115 |
-
finished_eval_table = gr.components.Dataframe(
|
116 |
-
value=finished_eval_queue_df,
|
117 |
-
headers=EVAL_COLS,
|
118 |
-
datatype=EVAL_TYPES,
|
119 |
-
row_count=5,
|
120 |
-
)
|
121 |
-
with gr.Accordion(
|
122 |
-
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
123 |
-
open=False,
|
124 |
-
):
|
125 |
-
with gr.Row():
|
126 |
-
running_eval_table = gr.components.Dataframe(
|
127 |
-
value=running_eval_queue_df,
|
128 |
-
headers=EVAL_COLS,
|
129 |
-
datatype=EVAL_TYPES,
|
130 |
-
row_count=5,
|
131 |
-
)
|
132 |
-
|
133 |
-
with gr.Accordion(
|
134 |
-
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
135 |
-
open=False,
|
136 |
-
):
|
137 |
-
with gr.Row():
|
138 |
-
pending_eval_table = gr.components.Dataframe(
|
139 |
-
value=pending_eval_queue_df,
|
140 |
-
headers=EVAL_COLS,
|
141 |
-
datatype=EVAL_TYPES,
|
142 |
-
row_count=5,
|
143 |
-
)
|
144 |
-
with gr.Row():
|
145 |
-
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
146 |
-
|
147 |
-
with gr.Row():
|
148 |
-
with gr.Column():
|
149 |
-
model_name_textbox = gr.Textbox(label="Model name")
|
150 |
-
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
151 |
-
model_type = gr.Dropdown(
|
152 |
-
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
153 |
-
label="Model type",
|
154 |
-
multiselect=False,
|
155 |
-
value=None,
|
156 |
-
interactive=True,
|
157 |
-
)
|
158 |
-
|
159 |
-
with gr.Column():
|
160 |
-
precision = gr.Dropdown(
|
161 |
-
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
162 |
-
label="Precision",
|
163 |
-
multiselect=False,
|
164 |
-
value="float16",
|
165 |
-
interactive=True,
|
166 |
-
)
|
167 |
-
weight_type = gr.Dropdown(
|
168 |
-
choices=[i.value.name for i in WeightType],
|
169 |
-
label="Weights type",
|
170 |
-
multiselect=False,
|
171 |
-
value="Original",
|
172 |
-
interactive=True,
|
173 |
-
)
|
174 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
175 |
-
|
176 |
-
submit_button = gr.Button("Submit Eval")
|
177 |
-
submission_result = gr.Markdown()
|
178 |
-
submit_button.click(
|
179 |
-
add_new_eval,
|
180 |
-
[
|
181 |
-
model_name_textbox,
|
182 |
-
base_model_name_textbox,
|
183 |
-
revision_name_textbox,
|
184 |
-
precision,
|
185 |
-
weight_type,
|
186 |
-
model_type,
|
187 |
-
],
|
188 |
-
submission_result,
|
189 |
-
)
|
190 |
-
|
191 |
-
with gr.Row():
|
192 |
-
with gr.Accordion("📙 Citation", open=False):
|
193 |
-
citation_button = gr.Textbox(
|
194 |
-
value=CITATION_BUTTON_TEXT,
|
195 |
-
label=CITATION_BUTTON_LABEL,
|
196 |
-
lines=20,
|
197 |
-
elem_id="citation-button",
|
198 |
-
show_copy_button=True,
|
199 |
-
)
|
200 |
-
|
201 |
-
scheduler = BackgroundScheduler()
|
202 |
-
scheduler.add_job(restart_space, "interval", seconds=1800)
|
203 |
-
scheduler.start()
|
204 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import requests
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
# from huggingface_hub import HfApi, HfFolder
|
6 |
+
# from evaluate import evaluate_prediction # importas tu función
|
7 |
+
|
8 |
+
REFERENCE_FILE_URL = "https://huggingface.co/datasets/juliocontrerash/my-challenge-data/resolve/main/reference.nc"
|
9 |
+
LOCAL_REF_PATH = "reference.nc"
|
10 |
+
|
11 |
+
def download_reference():
|
12 |
+
if not os.path.exists(LOCAL_REF_PATH):
|
13 |
+
r = requests.get(REFERENCE_FILE_URL)
|
14 |
+
with open(LOCAL_REF_PATH, 'wb') as f:
|
15 |
+
f.write(r.content)
|
16 |
+
|
17 |
+
download_reference() # bajamos la referencia al iniciar el Space
|
18 |
+
|
19 |
+
def evaluate_and_save(pred_file, participant_name):
|
20 |
+
"""
|
21 |
+
1. Guarda el archivo subido como local
|
22 |
+
2. Llama a evaluate_prediction
|
23 |
+
3. Registra los resultados en el dataset (opcional)
|
24 |
+
4. Retorna alguna visualización / texto
|
25 |
+
"""
|
26 |
+
if not pred_file:
|
27 |
+
return "No file uploaded", None
|
28 |
+
|
29 |
+
# Guardar local
|
30 |
+
pred_path = pred_file.name
|
31 |
+
|
32 |
+
# Evaluar
|
33 |
+
results = evaluate_prediction(pred_path, LOCAL_REF_PATH)
|
34 |
+
|
35 |
+
# Subir resultados a dataset en HF Hub (opcional)
|
36 |
+
# 1. Descarga submissions.jsonl
|
37 |
+
# 2. Añade una nueva línea con participant_name, results, time, etc.
|
38 |
+
# 3. `git push` o usar huggingface_hub para subir la versión actualizada
|
39 |
+
|
40 |
+
# Aqui creamos una grafica (opcional)
|
41 |
+
# Por ejemplo un plot con MRE_spectrum:
|
42 |
+
import matplotlib
|
43 |
+
matplotlib.use('Agg')
|
44 |
+
import matplotlib.pyplot as plt
|
45 |
+
import io
|
46 |
+
import base64
|
47 |
+
import numpy as np
|
48 |
+
|
49 |
+
mre_spectrum = results["mre_spectrum"]
|
50 |
+
plt.figure(figsize=(6,4))
|
51 |
+
plt.plot(np.arange(len(mre_spectrum)), mre_spectrum, label='MRE Spectrum')
|
52 |
+
plt.xlabel('Wavelength index')
|
53 |
+
plt.ylabel('Error')
|
54 |
+
plt.title('Spectral Error')
|
55 |
+
plt.legend()
|
56 |
+
|
57 |
+
buf = io.BytesIO()
|
58 |
+
plt.savefig(buf, format='png')
|
59 |
+
plt.close()
|
60 |
+
buf.seek(0)
|
61 |
+
img_str = base64.b64encode(buf.read())
|
62 |
+
img_str = "data:image/png;base64," + img_str.decode('utf-8')
|
63 |
+
|
64 |
+
message = f"Participant: {participant_name}\nMRE mean: {results['mre_mean']:.4f}\nRMSE: {results['rmse']:.4f}"
|
65 |
+
return message, img_str
|
66 |
+
|
67 |
+
with gr.Blocks() as demo:
|
68 |
+
gr.Markdown("# My Challenge\nSube tu archivo de predicciones para evaluar tu modelo.")
|
69 |
+
participant_name = gr.Textbox(label="Nombre del participante")
|
70 |
+
pred_file = gr.File(label="Subir archivo (csv, netcdf, etc.)")
|
71 |
+
|
72 |
+
output_message = gr.Textbox(label="Resultados")
|
73 |
+
output_image = gr.HTML(label="Gráfica")
|
74 |
+
|
75 |
+
submit_btn = gr.Button("Evaluar")
|
76 |
+
|
77 |
+
submit_btn.click(fn=evaluate_and_save,
|
78 |
+
inputs=[pred_file, participant_name],
|
79 |
+
outputs=[output_message, output_image])
|
80 |
+
|
81 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
evaluate.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import xarray as xr # si usas netCDF
|
3 |
+
# o from netCDF4 import Dataset
|
4 |
+
# o import csv etc. según tu formato
|
5 |
+
|
6 |
+
def evaluate_prediction(pred_file_path, reference_file_path):
|
7 |
+
"""
|
8 |
+
pred_file_path: str - Ruta al archivo subido por el participante
|
9 |
+
reference_file_path: str - Ruta a tu ground-truth, local o en la web
|
10 |
+
returns: dict - un diccionario con las métricas calculadas
|
11 |
+
"""
|
12 |
+
# Ejemplo usando netCDF
|
13 |
+
pred_data = xr.open_dataset(pred_file_path)
|
14 |
+
ref_data = xr.open_dataset(reference_file_path)
|
15 |
+
|
16 |
+
# Asume que ambos tienen la misma dimensión "wavelength" o algo similar
|
17 |
+
pred_values = pred_data["spectrum"].values # shape (n_wavelengths,)
|
18 |
+
ref_values = ref_data["spectrum"].values # shape (n_wavelengths,)
|
19 |
+
|
20 |
+
# Calcular MRE por banda
|
21 |
+
mre = np.abs((pred_values - ref_values) / ref_values)
|
22 |
+
|
23 |
+
# MRE medio
|
24 |
+
mre_mean = mre.mean()
|
25 |
+
|
26 |
+
# Otras métricas
|
27 |
+
rmse = np.sqrt(((pred_values - ref_values)**2).mean())
|
28 |
+
|
29 |
+
# Retornar resultados en un dict
|
30 |
+
return {
|
31 |
+
"mre_mean": float(mre_mean),
|
32 |
+
"rmse": float(rmse),
|
33 |
+
"mre_spectrum": mre.tolist(), # El espectro de MRE completo
|
34 |
+
}
|