Junaed59 commited on
Commit
9835d66
·
verified ·
1 Parent(s): 13765cd

Update app.py

Browse files

![1000003774.png](https://cdn-uploads.huggingface.co/production/uploads/6866711c4357f5b535fb9015/YG_TMswoCXYUzW6wMntjK.png)

Files changed (1) hide show
  1. app.py +21 -56
app.py CHANGED
@@ -1,64 +1,29 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
27
 
28
- response = ""
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
  """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import pipeline
3
 
4
+ # Load Bengali AI model
5
+ bangla_ai = pipeline("text2text-generation", model="csebuetnlp/banglat5")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
+ # Custom Q&A pairs (edit these!)
8
+ qa_pairs = {
9
+ "মুক্তিযুদ্ধ কবে শুরু হয়েছিল?": "১৯৭১ সালের ২৬ মার্চ।",
10
+ "When did the Liberation War begin?": "March 26, 1971."
11
+ }
12
 
13
+ def chat(message):
14
+ # Check if question is in Q&A pairs
15
+ if message in qa_pairs:
16
+ return qa_pairs[message]
17
+ # Else, use BanglaT5
18
+ return bangla_ai(message, max_length=100)[0]['generated_text']
19
 
20
+ # Create interface
21
+ with gr.Blocks(theme=gr.themes.Soft()) as app:
22
+ gr.Image("1000003774.png", width=200, label="NOTUNBANGLA") # Your logo
23
+ gr.ChatInterface(chat, title="NOTUNBANGLA AI", description="বাংলায় প্রশ্ন করুন")
 
 
 
 
24
 
25
+ app.launch()
26
+
27
 
 
 
 
28
  """
29
+ For information on how to customize the