Spaces:
Sleeping
Sleeping
File size: 1,143 Bytes
e085bc3 0955bb2 e085bc3 d557f8c fc54e2d c13ab50 374220a c13ab50 0955bb2 e085bc3 3e1a945 134cd94 e085bc3 3e1a945 134cd94 e085bc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
# app.py
import streamlit as st
from models.fraud_detection_model import load_fraud_detection_model, predict_fraud
from utils.preprocessing import preprocess_data_for_streamlit
from utils import feature_engineering
import pandas as pd
import tensorflow
def load_parquet_file(parquet_file_path):
return pd.read_parquet(parquet_file_path)
model_path = 'models/fraud_detection_model.h5'
fraud_model = load_fraud_detection_model(model_path)
from datasets import load_dataset
dataset = load_dataset("iix/Parquet_FIles/Fraud_detection.parquet")
# Load data
#data_path = 'data/dataset.csv'
df, X_scaled = preprocess_data_for_streamlit(dataset)
# Streamlit App
st.title('Fraud Detection Web App')
# Sidebar with user input
selected_index = st.sidebar.selectbox('Select an index:', df.index)
selected_data = X_scaled[selected_index].reshape(1, -1)
# Display selected data
st.write('Selected Data:')
st.write(df.iloc[selected_index])
# Predict fraud
if st.button('Predict Fraud'):
prediction = predict_fraud(fraud_model, selected_data)
result = "Fraud" if prediction[0][0] == 1 else "Non-Fraud"
st.write(f'Prediction: {result}')
|