Junaid-EEE11 commited on
Commit
d1d8839
·
1 Parent(s): 68af965

Create main.py

Browse files
Files changed (1) hide show
  1. main.py +30 -0
main.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # main.py
2
+ from utils.preprocessing import preprocess_data
3
+ from models.fraud_detection_model import build_model
4
+ from utils.flexflow_integration import FlexFlowIntegration
5
+ from utils.feature_engineering import feature_engineering
6
+ from utils.encryption import encrypt_data, decrypt_data
7
+ from utils.lora_integration import LoRaIntegration
8
+ from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, roc_auc_score
9
+
10
+ # Example Usage
11
+ data_path = 'data/dataset.csv'
12
+ X_train, X_test, y_train, y_test = preprocess_data(data_path)
13
+ model = build_model(X_train.shape[1])
14
+ model.fit(X_train, y_train, epochs=10, batch_size=32)
15
+
16
+ # Save the entire model
17
+ model.save('models/fraud_detection_model.h5')
18
+
19
+ # Example FlexFlow Integration
20
+ data_dict = {"score": 0.8, "timestamp": "2023-01-01 12:34:56"}
21
+ FlexFlowIntegration.encrypt_and_send(data_dict)
22
+ received_data = FlexFlowIntegration.receive_and_decrypt()
23
+
24
+ if received_data:
25
+ result = FlexFlowIntegration.execute_model(received_data)
26
+ print("Model Result:", result)
27
+
28
+ # Example Evaluation (assuming y_true and y_pred are defined)
29
+ y_pred = model.predict_classes(X_test)
30
+ evaluate_model(y_test, y_pred)