Spaces:
Sleeping
Sleeping
Commit
·
d1d8839
1
Parent(s):
68af965
Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# main.py
|
2 |
+
from utils.preprocessing import preprocess_data
|
3 |
+
from models.fraud_detection_model import build_model
|
4 |
+
from utils.flexflow_integration import FlexFlowIntegration
|
5 |
+
from utils.feature_engineering import feature_engineering
|
6 |
+
from utils.encryption import encrypt_data, decrypt_data
|
7 |
+
from utils.lora_integration import LoRaIntegration
|
8 |
+
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, roc_auc_score
|
9 |
+
|
10 |
+
# Example Usage
|
11 |
+
data_path = 'data/dataset.csv'
|
12 |
+
X_train, X_test, y_train, y_test = preprocess_data(data_path)
|
13 |
+
model = build_model(X_train.shape[1])
|
14 |
+
model.fit(X_train, y_train, epochs=10, batch_size=32)
|
15 |
+
|
16 |
+
# Save the entire model
|
17 |
+
model.save('models/fraud_detection_model.h5')
|
18 |
+
|
19 |
+
# Example FlexFlow Integration
|
20 |
+
data_dict = {"score": 0.8, "timestamp": "2023-01-01 12:34:56"}
|
21 |
+
FlexFlowIntegration.encrypt_and_send(data_dict)
|
22 |
+
received_data = FlexFlowIntegration.receive_and_decrypt()
|
23 |
+
|
24 |
+
if received_data:
|
25 |
+
result = FlexFlowIntegration.execute_model(received_data)
|
26 |
+
print("Model Result:", result)
|
27 |
+
|
28 |
+
# Example Evaluation (assuming y_true and y_pred are defined)
|
29 |
+
y_pred = model.predict_classes(X_test)
|
30 |
+
evaluate_model(y_test, y_pred)
|