# app.py import streamlit as st from models.fraud_detection_model import load_fraud_detection_model, predict_fraud from utils.preprocessing import preprocess_data_for_streamlit from utils import feature_engineering import pandas as pd import tensorflow def load_parquet_file(parquet_file_path): return pd.read_parquet(parquet_file_path) model_path = 'models/fraud_detection_model.h5' fraud_model = load_fraud_detection_model(model_path) from datasets import load_dataset dataset = load_dataset("iix/Parquet_FIles/Fraud_detection.parquet") # Load data #data_path = 'data/dataset.csv' df, X_scaled = preprocess_data_for_streamlit(dataset) # Streamlit App st.title('Fraud Detection Web App') # Sidebar with user input selected_index = st.sidebar.selectbox('Select an index:', df.index) selected_data = X_scaled[selected_index].reshape(1, -1) # Display selected data st.write('Selected Data:') st.write(df.iloc[selected_index]) # Predict fraud if st.button('Predict Fraud'): prediction = predict_fraud(fraud_model, selected_data) result = "Fraud" if prediction[0][0] == 1 else "Non-Fraud" st.write(f'Prediction: {result}')